

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE BATNA 2

FACULTE DE TECHNOLOGIE

DEPARTEMENT DE GENIE CIVIL

3^{éme} Année Génie Civil

Matière: TP MDC2			
Nom:			
Prénom :			
Groupe:			
Encadreur :			

TP N°02: FORMULATION DE DREUX GORISSE

Année universitaire -----/-----

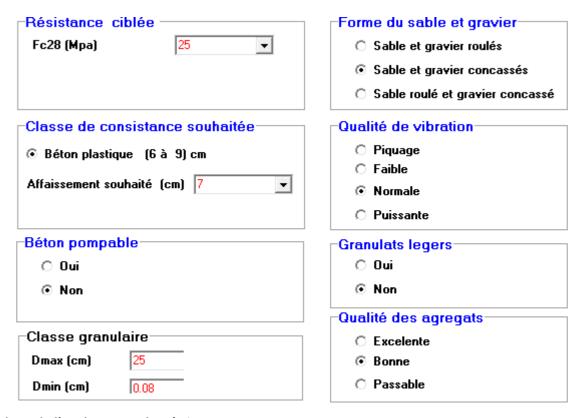
TRAVAIL DEMANDE

A partir des données de bases suivantes et les caractéristiques des matériaux utilisés, déterminer la formulation théorique du béton en utilisant la méthode de Dreux Gorisse.

1. Matériaux utilisés

Masse volumique du sable t/m3 = 2.63

Masse de finesse du sable $M_f = 2.2$


Masse volumique du gravier 7/15 t/m3 = 2.66

 \triangleright Masse volumique du gravier 15/25 t/m3 = 2.66

> CEM II R 32.5 – Vraie classe du ciment et 45

ightharpoonup Masse volumique du ciment t/m3 = 3.1

2. Données de calcul

3. Résultats de l'analyse granulométrique:

Tamis (mm)	Tamisât % sable	Tamis (mm)	Tamisât % Gravier 1	Tamis (mm)	Tamisât % Gravier 2
3.15	100.00	20.00	100.00	31.50	100.00
2.50	99.92	16.00	98.80	25.00	90.51
2.00	99.70	12.50	96.00	20.00	61.32
1.25	95.60	10.00	76.60	16.00	35.33
1.00	86.00	8.00	56.60	12.50	11.04
0.63	40.70	6.30	45.20	10.00	1.97
0.50	32.40	5.00	17.70	8.00	1.14
0.32	9.80	4.00	11.40	6.30	0.42
0.20	4.20	3.15	10.80		
0.16	2.80	2.50	7.80		
0.08	1.54	2.00	4.20		
		1.25	3.40		
		1.00	3.10		

Module	Tamis [mm]
46	31.5
45	25
44	20
43	16
42	12.5
41	10
40	8
39	6.3
38	5
37	4
35	2.5
32	1.25
29	0.63
26	0.315
23	0.16
20	0.08
	·

Courbes granulométriques +Droite de Dreux et Toutes les courbe de partage (% du sable, gravier1 et gravier2)

Préparée sur Excel est rapporter dans cette page

Cole ici

DETAIL DES CALCULS

1. Ciment

Masse	volume
Widsse	Volume
2. Mase et volume d'eau	
Masse	volume
3. Mase et volume du sable	
Masse	volume
4. Mase et volume du Gravier1	
Masse	volume
5. Mase et volume du Gravier2	
Masse	volume
ividsse	volune

Formulation de Dreux Gorisse pour un béton ordinaire

Fiche Calcul Dreux

1- Cahier des charges:	Affaissemnt (cm) Aff= Résistance souaitée (Mpa) σ ₂₈ = Dmax (mm) = '								
2- Détermination de C/E:	G = .	C/E=							
3- Détermination du dosage ciment :	Copt=	Cmin=	0.00						
	Cim avant correct=		Eau avant correct= .			Coffictient de correction= 0.00			
	C =		E =						
4- Détermination de la droite de Dreux :	K =	Ks =	K	(p =	X= .	y=			
5- Détermination du pourcentage en	(%) Sable = (%			%) Gravi	Gravier1=				
volume absolu de matériaux	(%) Gravier2=		(%) Gravier3=						
6- Détermination de la compacité du béton	C0=	C1 =	1	C2 =	C3=	C =			
7- Détermination des volumes des granulats	Vs(l/m3)		Vg1(l/m3	3)=	. Vg2(l/m3)=	Vg3(l/m3)=			
8- Détermination des masses des granulats	Ms(Vm3)	-	Mg1(l/m	3)=	Mg2(l/m3)=	Mg3(l/m3)=			
9- Formulation theorique du béton	C (kg	g/m3) =		G1 (kg/r	n3) =				
(sans prise en compte de l'humidité)	G announced	3) =	¥))	G2(kg/m	-10767				
	S(kg	/m3) =		G3(kg/m	3) =				
	100								

NB : A ne pas prendre en considération la correction de la pâte (ciment et eau) et ne pas prendre en considération la quantité min du Ciment.