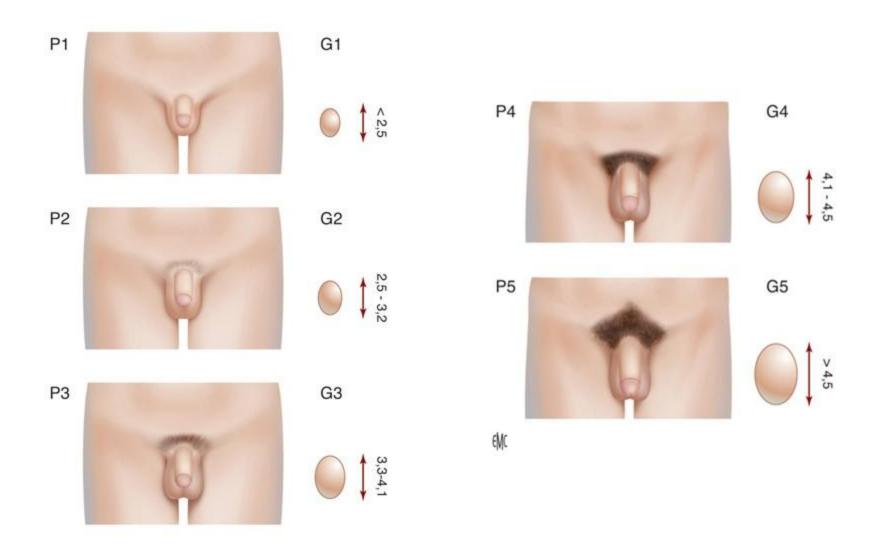
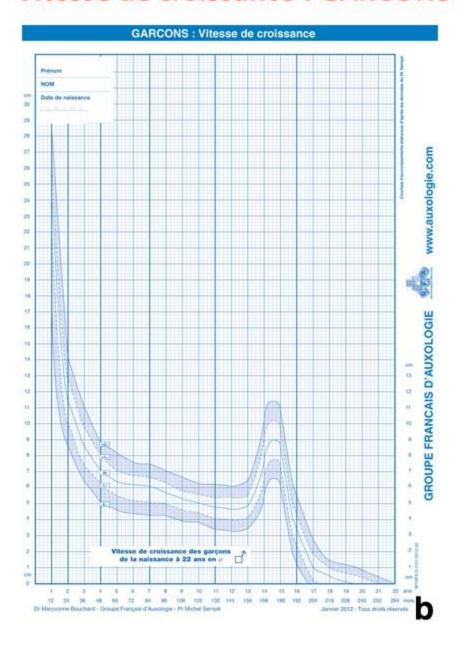


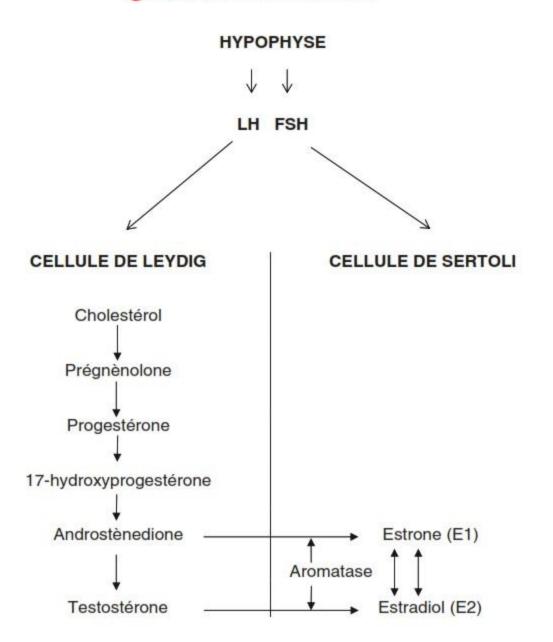
Université Batna 2 Département de médecine Faculté de médecine



PHYSIOLOGIE ENDOCRINNIENE ET GENITALE: Fonction gonadique masculine

Dr J.O. BOUHIDEL


Développement des caractères sexuels secondaires chez le garçon selon la classification de Tanner.


Développement des caractères sexuels secondaires chez le garçon selon la classification de Tanner.

P: cotation de la pilosité pubienne. G: cotation du volume testiculaire. La cotation de la pilosité axillaire (A) n'est pas décrite. P1: absence de pilosité; P2: quelques poils longs pubiens; P3: pilosité pubienne au-dessus de la symphyse; P4: pilosité pubienne de forme triangulaire n'atteignant pas la racine des cuisses; P5: pilosité de forme losangique s'étendant à la racine de la cuisse et vers l'ombilic; G1: volume testiculaire inférieur à 3ml ou 2,5cm de longueur; G2: volume testiculaire de 4 à 6ml ou longueur entre 2,5 et 3,2cm; G3: volume testiculaire de 6 à 12ml ou longueur entre 3,3 et 4,1cm; G4: volume testiculaire de 12 à 16ml ou longueur entre 4,1 et 4,5cm; G5: volume testiculaire de 20 à 25ml ou longueur supérieure à 4,5cm.

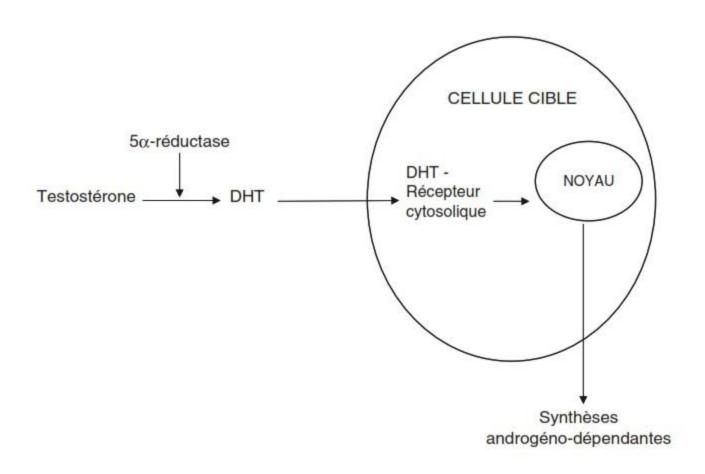

Vitesse de croissance : GARCONS

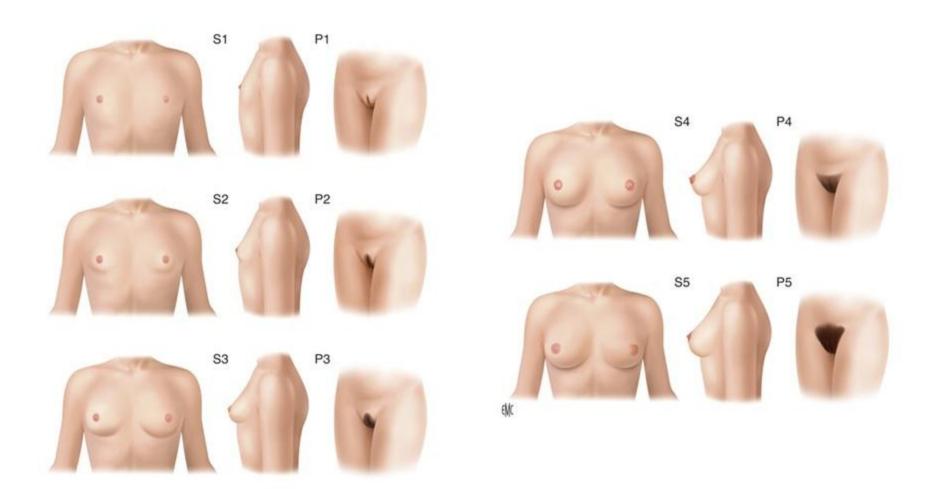
Schéma de la biosynthèse hormonale au sein de la gonade masculine.

Activation de la testostérone en dihydrotestostérone et mode d'action au niveau des sites récepteurs.

Université Batna 2 Département de médecine Faculté de médecine

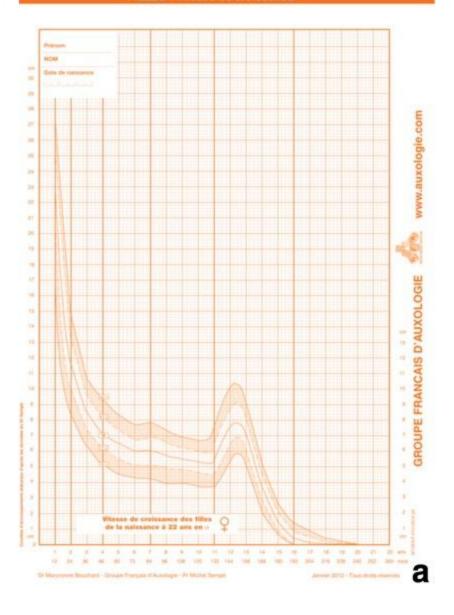
Utérus

Col de l'utérus

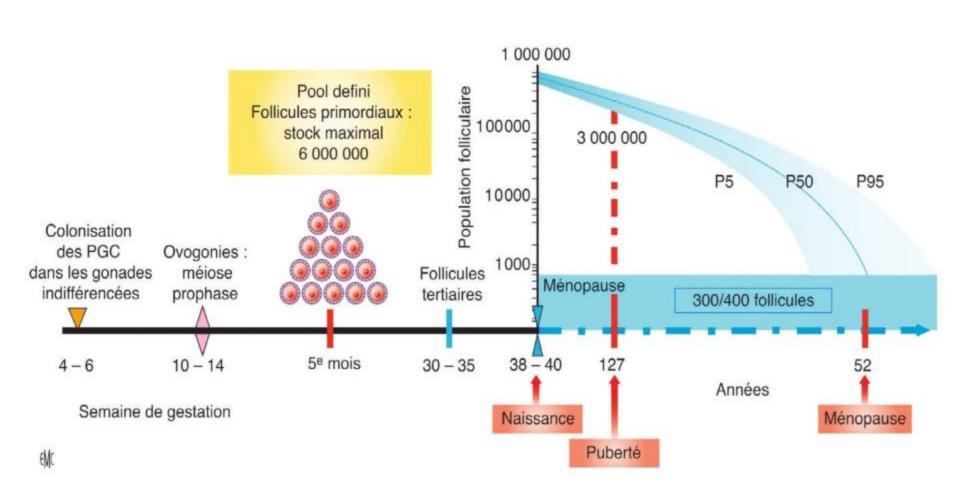

Endomètre

Vagin

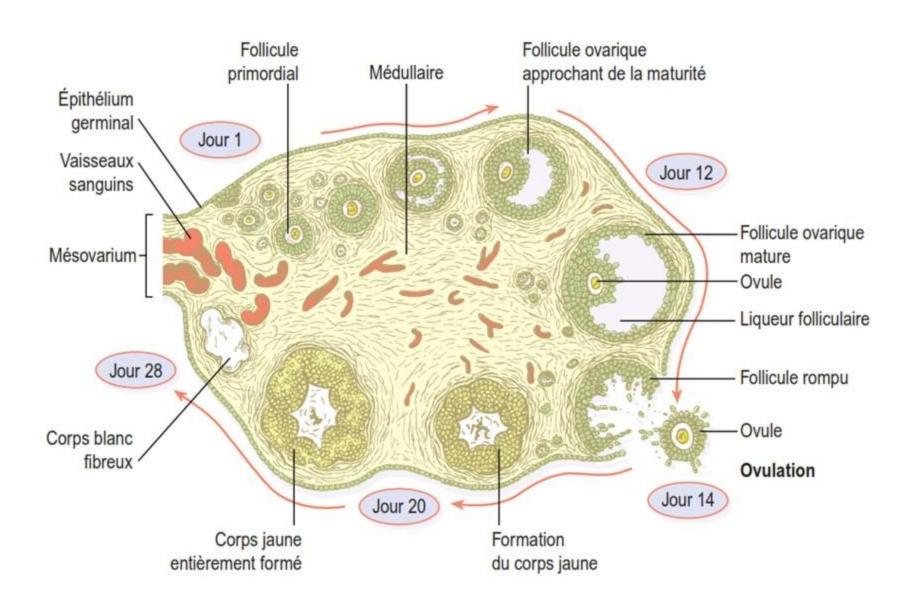
PHYSIOLOGIE ENDOCRINNIENE ET GENITALE: Fonction gonadique féminine


Dr J.O. BOUHIDEL

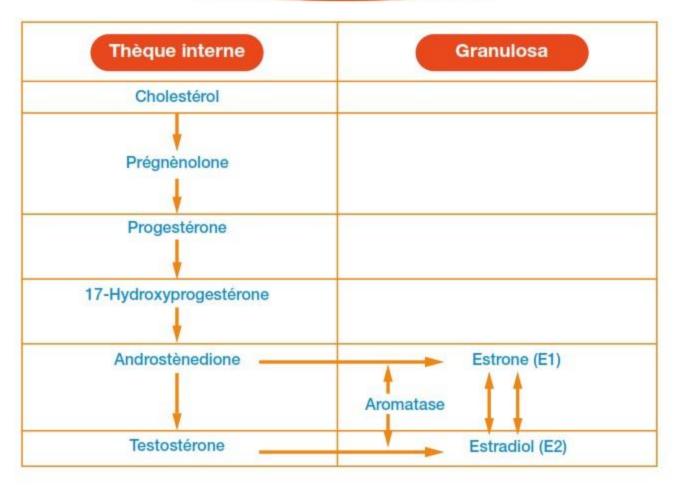
Développement des caractères sexuels secondaires chez la fille selon la classification de Tanner.



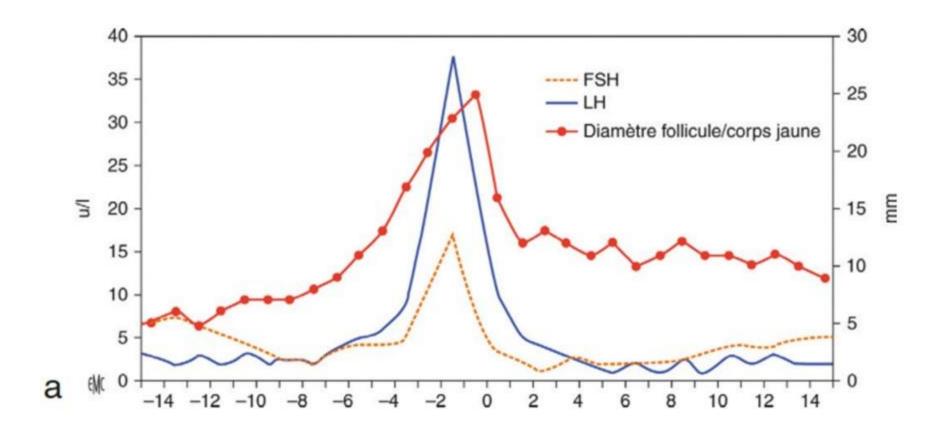
Vitesse de croissance : FILLES


FILLES: Vitesse de croissance

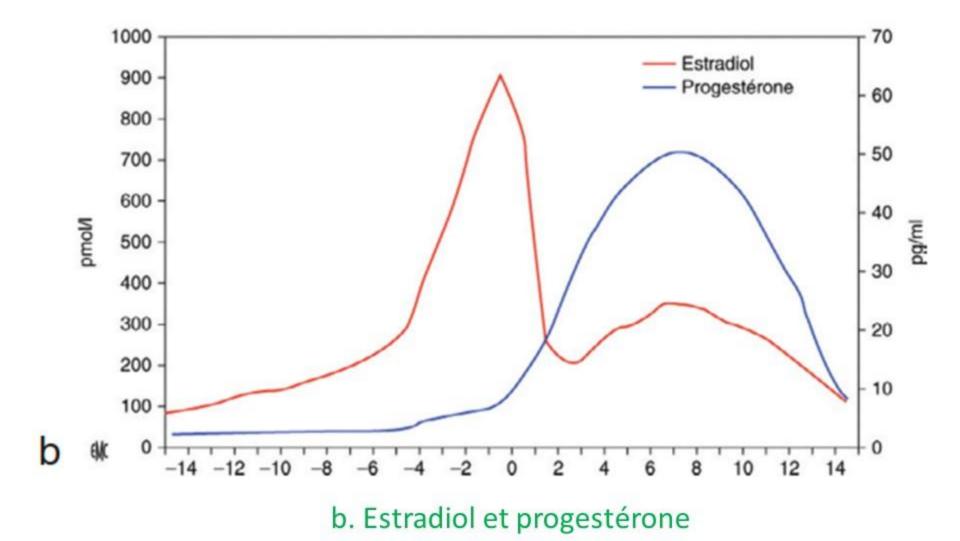
Évolution du stock folliculaire ovarien : depuis la vie embryonnaire et fœtale, jusqu'à la naissance, la puberté et la ménopause



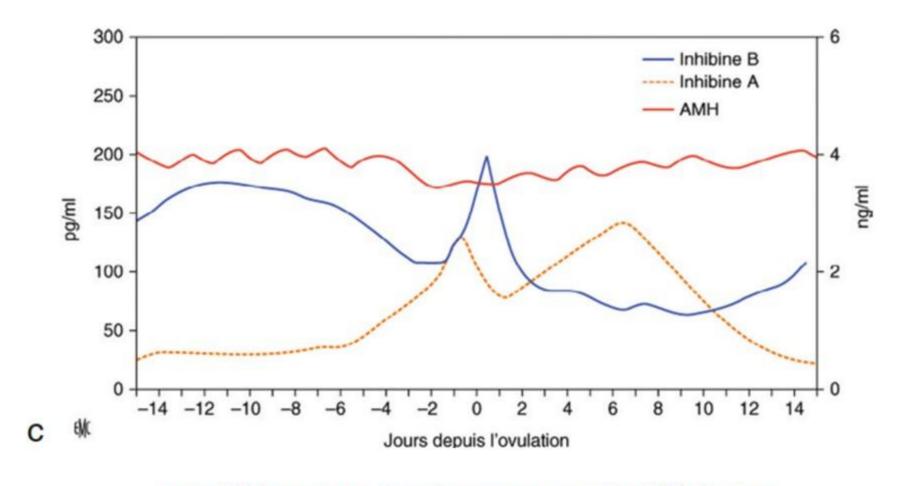
Coupe d'ovaire et développement du follicule ovarien



Sécrétion hormonale au sein du follicule ovarien



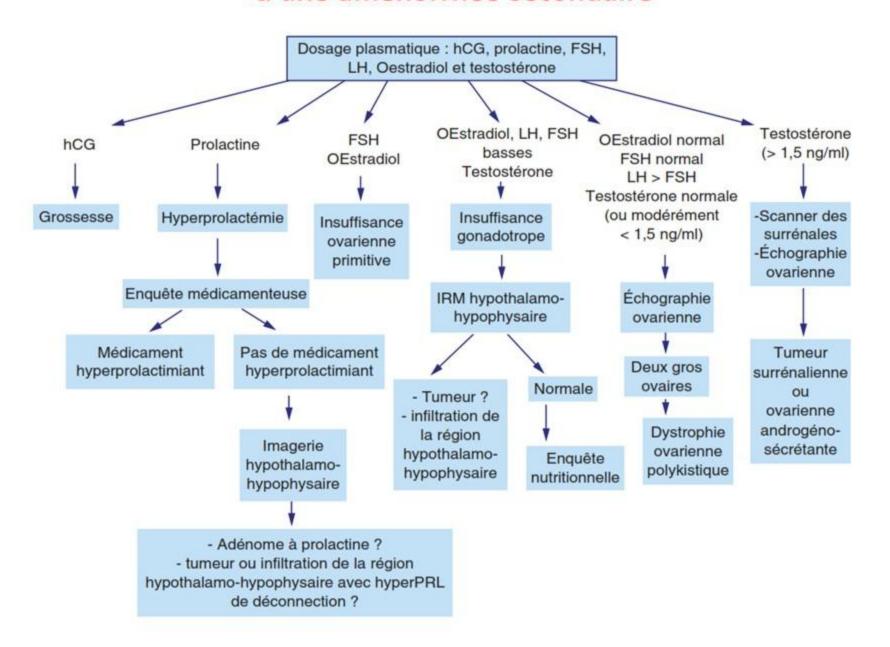
Evolution des concentrations hormonales au cours du cycle



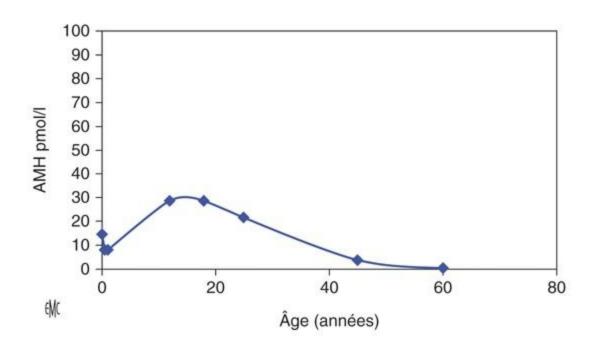
a. Gonadostimulines FH et LH
 (avec mention du rapport diamètre follicule/corps jaune)

Evolution des concentrations hormonales au cours du cycle

Evolution des concentrations hormonales au cours du cycle

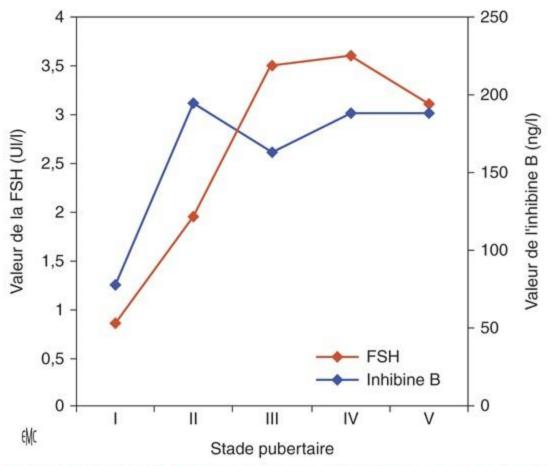


c. Inhibines A et B et hormone antimüllérienne.


Origine et causes principales des aménorrhées pathologiques

Origine	Aménorrhées primaires	Aménorrhées secondaires	
Gonophorique	Syndrome de Rokitansky-Kuster-Hauser	Synéchies utérines	
Ovarienne	Syndrome de Turner Autres dysgénésies ovariennes Hermaphrodisme Bloc de la 17α-hydroxylase	Insuffisance ovarienne primitive Ovariectomie Radiothérapie Chimiothérapie	
Hypophysaire	Adénomes hypophysaires	Hyperprolactinémie Syndrome de Sheehan Hypophysite	
Hypothalamique	Syndrome de Kallmann-De Morsier	Infiltrations Tumeurs	
Centrales		Fonctionnelles Anorexie mentale	
Avec virilisation	Bloc congénital de la 21-hydroxylase Traitements androgéniques maternels	Bloc de la 21-hydroxylase à révélation tardive Ovaires polymicrokystiques Tumeur virilisante : – de l'ovaire – de la surrénale	

Algorithme de prise en charge diagnostique d'une aménorrhée secondaire



Évolution de la sécrétion d'hormone antimullérienne (AMH) chez la fille en fonction de l'âge.

Le taux d'AMH augmente en période prépubertaire, atteint un pic entre 18 et 25ans puis décline. Valeur médiane de l'AMH, d'après Hagen [12] et Lie Fong [13].

Évolution de la sécrétion de follicle stimulating hormone (FSH) et d'inhibine B chez le garçon selon la classification de Tanner.

Valeur médiane de la FSH et d'inhibine B : avec le démarrage pubertaire, une nouvelle ascension a lieu, avec un pic au stade G3 chez le garçon, d'après Anderson .

Université Batna 2 Département de médecine Faculté de médecine

PHYSIOLOGIE ENDOCRINNIENE ET GENITALE: Grossesse et lactation

Dr J.O. BOUHIDEL

Modifications hémodynamiques au cours de la grossesse

Paramètres	Avant la grossesse	Pendant la grossesse	À l'accouchement	
Débit cardiaque (L/min)	4–5	6 (+ 30 % à 50 %)	+ 60 %	
VES (mL)/volume sanguin	65	72 (+ 30 % à 50 %)	+ 300 mL (contractions)	
Fréquence cardiaque (bpm)	70	85 (+ 17 %)	Augmente si douleur	
PAS/PAD (mmHg)	110/80	105/70 (- 5/- 10)	Augmente si douleur	
RVS (dyne.cm.s-5)	1600	1000	Augmente si douleur	
RVP (dyne.cm.s-5)	119	78 (- 21 %)	Augmente si douleur	
PAPO (mmHg)	6,3	7,5		
PVC (mmHg)	3,7	3,6		
Osmolarité (mOsm/L)	287	272		
Rénine plasmatique (pg/mL)	16	41		
Peptide α-natriuretique (pmol/L)	54	30		
Volume plasmatique (mL)	2500	3800		
Volume globulaire (mL)	1500	1800 (+ 15 % – 20 %)		

Bpm: battement par minute.

Modifications hématologiques (a) et de la coagulation (b) et de la fonction rénale (c)

Hémoglobine ↓ Hématocrite 1 Ferritine \ a Globules blancs T Polynucléaires neutrophiles 1 Plaquettes inchangées (possibilité de ↓ modérée en fin de grossesse dans 6-8 % des cas) • Fibrinogène T • Facteurs VII, VIII, X, XII ↑ Willebrand ↑ Facteurs II, V et IX inchangés Facteurs XI, XIII ↓ Activité fibrinolytique ↓ • Antithrombine III ↓ (- 10 %) • Protéine S ↓ (- 50 %) Filtration glomérulaire ↑ Taux sérique ↓ créatinine, urée, acide urique • Clairances ↑ créatinine, urée, acide urique ↑ de la glycosurie, de la protéinurie

Osmolalité plasmatique ↓

Modifications biochimiques (a) et immunologiques (b) et des fonctions hépatiques (c)

```
· Gaz du sang

    PaO,↑ PaCO,↓ (pression alvéolaire)

    P CO, artérielle ↓

a
               - pH à peu près stable

    Électrolytes : HCO3-↓

    Protides totaux ↓

    Albumine ↓

 α1, α2, β-globulines ↑

    γ-globulines inchangées

    α-fœtoprotéine ↑

    Vitesse de sédimentation ↑

    CRP inchangée

    IgG↓

b

    IgM et IgA stables

    Complément C3-C4 et CH50 ↑

    Phosphatases alcalines ↑

              Transaminases inchangées
              Gammaglutamyl transpeptidase inchangée

    Lacticodéshydrogénase (LDH) inchangée

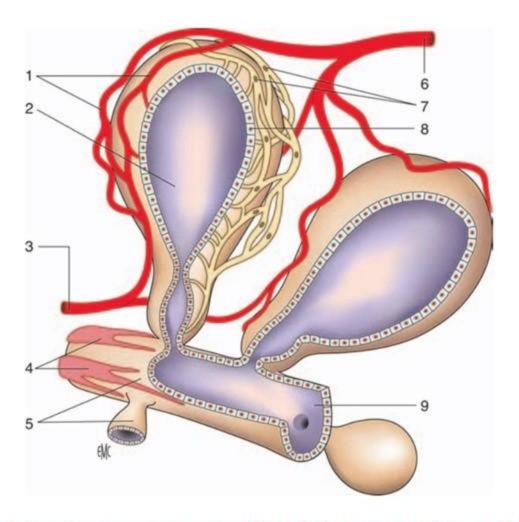
             Lipasémie et amylasémie inchangées

    Acides biliaires totaux inchangés
```

Modifications endocrininiennes

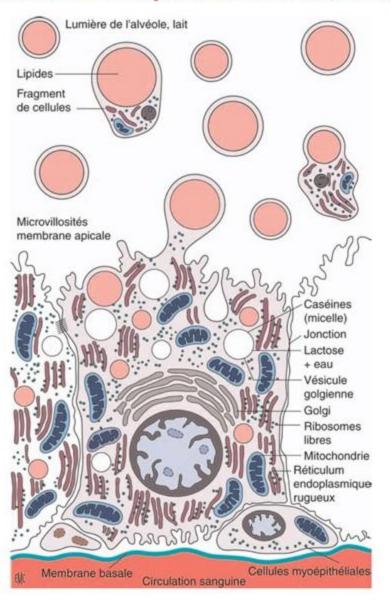
- Stéroïdes sexuels
 - œstradiol ↑++
 - progestérone et 17-OHP ↑ ++
 - testostérone ↑ ++
- Prolactine ↑ ++
- Surrénales
 - cortisol ↑, cortisol libre ↑, transcortine
 (CBG, corticosteroid binding globulin) ↑
 - aldostérone ↑
- Thyroïde
 - TSH ↓ au 1^{er} trimestre puis inchangée
 - TBG↑
 - T₄ totale ↑, T₄ libre inchangée en fait tendance à la baisse de la T4 libre et augmentation progressive de la TSH
 - T, totale ↑, T, libre inchangée
 - Iodurie ↓
 - ↑ ++ : augmentation très importante de l'ordre de 10 fois ou plus

	Femmes non enceintes	1er trimestre	2º trimestre	3° trimestre
Hématologie				
Hémoglobine (g/dL)*	12-15,8	11,6-13,9	9,7–14,8	9,5-15
Hématocrite (%)*	35,4-44,4	31-41	30-39	28-40
Volume globulaire moyen (fL)	79-93	81-93	82-97	81–99
Ferritine (µg/L) *	10-150	6-130	2-230	0-116
Plaquettes (G/L)	165-415	174-391	155-409	146-429
Globules blancs (×10³/mm)	3,5-9,1	5,7-13,6	5,6-14,8	5,9-16,9
Polynucléaires neutrophiles (× 10³/mm)	1,4-4,6	3,6-10,1	3,8-12,3	3,9-13,1
Lymphocytes (×10³/mm)	0,7-4,6	1,1-3,6	0,9-3,9	1,0-3,6
Coagulation	ti-			
Facteur V (%)	50-150	75-95	72-96	60-88
Facteur VII (%)	50-150	100-146	95-153	149-211
Facteur VIII (%)	50-150	90-210	97-312	143-353
Facteur IX (%)	50-150	103-172	154-217	164-235
Facteur XI (%)	50-150	80-127	82-144	65-123
Facteur XII (%)	50-150	78-124	90-151	129-194
Fibrinogène (g/L)	2,33-4,96	2,44-5,1	2,91-5,38	3,73-6,14
Antithrombine III (%)	70-130	85-114	88-112	82-116
Protéine C (%)	70-130	78-121	83-133	67–135
Protéine S (%)	70-140	39-105	27–101	33-101
Facteur Willebrand (%)	75–125	-	_	121-260
D-dimères (μg/L)	220-740	50-950	320-1290	130-1 700

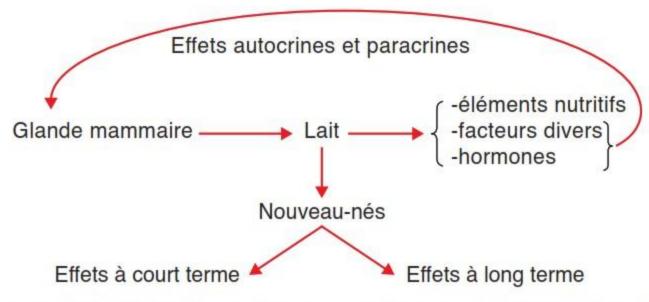

Biochimie				
Créatinine (µmol/L)	44,2-80	35-62	35-70	35-80
Urée mmol/L	2,5-7,2	2,5-4,6	1,1-4,6	1,1-3,9
Acide urique (µmol/L)	150-330	120-250	140-290	180-375
Albumine (g/L)	41-53	31–51	26-45	23-42
ALAT (U/L)	7-41	3-30	2-33	2-25
ASAT (U/L)	12-38	3-23	3-33	4-32
PAL (U/L)	33-96	17-88	25-126	38-229
GGT (U/L)	9-58	2-23	4-22	3-26
LDH (U/L)	115-221	78-433	80-447	82-524
Bilirubine totale (µmol/L)	5–22	2-7	2-14	2-19
Amylase (UI/L)	20-96	24-83	16-73	15-81
Acides biliaires (µmol/L)	0,3-4,8	0-4,9	0-9,1	0-11,3
Bicarbonates (mmol/L)	22-30	20-24	20-24	20-24

	Femmes non enceintes	1er trimestre	2º trimestre	3° trimestre
Hormones				
Cortisol (nmol/L)	0-690	190-525	275-1 160	331-1 380
TSH (mUI/L)	0,34-4,25	0,6-3,4	0,37-3,6	0,38-4,04
Thyroxin binding globulin (mg/dL)	1,3-3	1,8-3,2	2,8-4	2,6-4,2
Thyroxine (T4) totale (nmol/L)	69-151	84-130	97–133	81-125
T4 libre (pmol/L)	10,3-22	10,3-15,4	7,7-12,8	6,4-10,3
T3 totale (nmol/L)	12-20,7	15-23	18-26	19-25
T3 libre (pmol/L)	4-6	6-7	6-7	-
Aldostérone (ng/dL)	2-9	6-104	9-104	15-101
Médiateurs d'immunité				
C3 (g/L)	8,3-17,7	6,2-9,8	7,3-10,3	7,7-11,1
C4 (g/L)	1,6-4,7	1,8-3,6	1,8-3,4	2,2-3,2
IgA (g/L)	7–35	9,5-24	10-23	11-25
IgG (g/L)	70-170	98-126	81–113	67-99
IgM (g/L)	5-30	7–23	7–22	8-27
Stéroïdes				
Œstradiol (nmol/L)	< 0,07-1,6	0,7-9,2	4,7-26,6	12,8-24,7
Progestérone (nmol/L)	< 3-64	25-153	-	314-1089
Prolactine (ng/mL)	0-20	36-213	110-330	137-372
Testostérone (ng/dL)	6-86	26-211	34-243	63-309
17-OH-progestérone (nmol/L)	0,6-10,6	5,2-28,5	5,2-28,5	15,5-84

Lipides				
Cholestérol total (g/L)	< 2	1,4-2,1	1,7–3	2,2-3,5
HDL (g/L)	0,4-0,6	0,4-0,78	0,52-0,87	0,48-0,87
LDL (g/L)	< 0,1	0,6-1,53	0,77-1,84	1,01-2,24
Triglycérides (g/L)	< 1,5	0,4-1,59	0,75-3,82	1,31-4,53
Biochimie cardiaque				
Atrial natriuretic peptide (ANP) (pg/mL)	-	_	28,1-70,1	-
Brain natriuretic peptide (BNP) (pg/mL)	< 167	=	13,5-29,5	-
Créatine kinase (UI/L)	39-238	27-83	25-75	13-101
Créatine kinase MB (UI/L)	< 6	-	-	1,8-2,4
Troponine I (ng/mL)	0-0,08	-	-	0-0,064
Gaz du sang				
рН	7,38-7,42		-	7,39-7,45
PO ₂ (mmHg)	90-100	93-100	90-98	92-107
PCO ₂ (mmHg)	38-42	-	-	25-33
HCO3- (mEq/L)	22-26	-	-	16-22


^{*} comprend les femmes ayant été supplémenté en fer.

Structure d'une alvéole mammaire

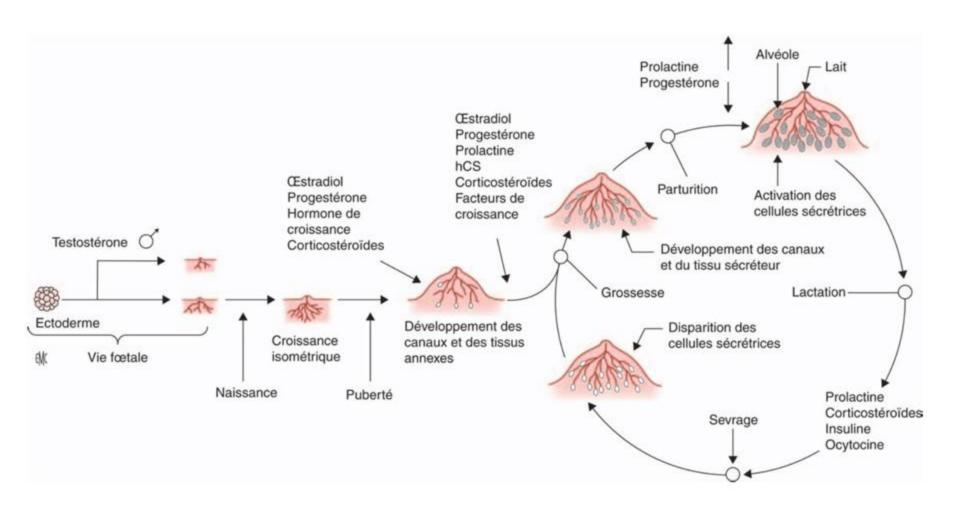


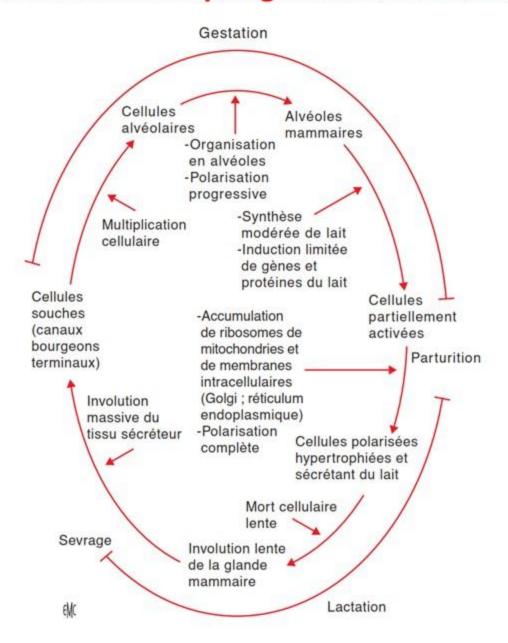
Capillaires ; 2. lait ; 3. sang veineux ; 4. cellules musculaires lisses ; 5. canaux ;
 sang artériel ; 7. cellules myoépithéliales stimulables par l'ocytocine ; 8. cellule sécrétrice ; 9; canal excréteur.

Représentation symbolique d'une cellule épithéliale mammaire complétement différencié

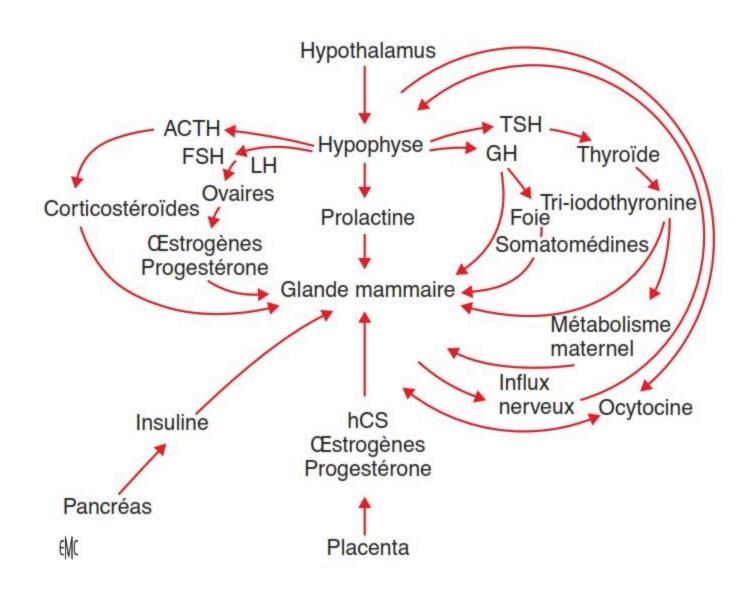
Différentes propriétés biologiques du lait

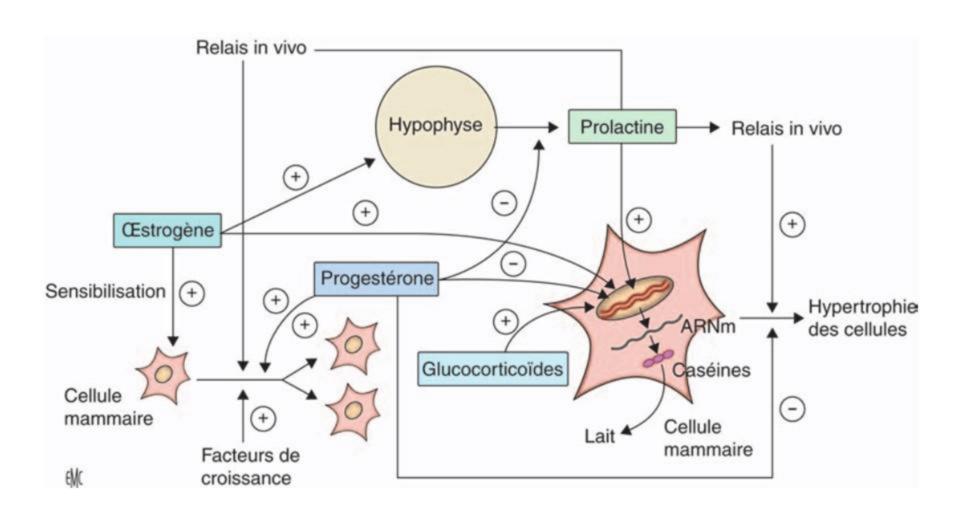
- -apport nutritif (protéines, lipides, carbohydrates)
- -compensation de l'immaturité du pancréas (enzymes de digestion)
- -compensation de l'immaturité des systèmes de protections intestinaux et immunitaires (molécules antipathogènes)


 croissance et différenciation de certains organes du nouveau-né (muqueuse intestinale, cerveau...)


Effets immunoprotecteurs du lait

Éléments	Action
Lymphocytes B	Produisent des anticorps dirigés contre des microbes spécifiques
Macrophages	Tuent les microbes directement dans l'intestin du nourrisson, produisent du lysozyme et activent d'autres composants du système immunitaire
Neutrophiles	Phagocytose des bactéries dans le système digestif du nourrisson
Lymphocytes T	Tuent les cellules infectées ou émettent des messages chimiques pour activer d'autres défenses. Prolifèrent en présence d'organismes pouvant induire de graves maladies chez le nourrisson. Synthétisent également des composés renforçant la réaction immunitaire du nourrisson
Anticorps de la classe des immunoglobulines A sécrétoires	Se lient aux micro-organismes dans les voies digestives du nourrisson, les empêchant ainsi de traverser la paroi intestinale et d'atteindre d'autres tissus de l'organisme
Protéine de liaison B ₁₂	Réduit la quantité de vitamine B ₁₂ accessible aux bactéries
Facteur bifidus	Favorise la croissance de Bacillus bifidus, une bactérie inoffensive présente dans les voies digestives du nourrisson. Le développement de telles bactéries limite la prolifération des espèces dangereuses
Acides gras	Attaquent les membranes entourant certains virus et les détruisent
Fibronectine	Amplifie l'activité antimicrobienne des cellules immunitaires
Interféron γ	Augmente l'activité antimicrobienne des cellules immunitaires
Hormones et facteurs de croissance Accélèrent la maturation du système digestif du nourrisson. Après le développement de initialement perméables, de l'intestin, le nourrisson devient moins vulnérable aux micr	
Lactoferrine	Fixe le fer, dont nombre de bactéries ont besoin pour survivre. En réduisant la quantité de fer disponible, la lactoferrine contrecarre la croissance des bactéries pathogènes
Lysozyme	Tue les bactéries en dissociant leur paroi cellulaire
Mucines	Adhèrent aux bactéries et aux virus, les empêchant ainsi de se fixer à la surface des muqueuses
Oligosaccharides	Se lient aux micro-organismes et leur interdisent de se fixer à la surface des muqueuses


Principales étapes du développement de la glande mammaire hCS : human chorionic somatotropin


Principaux événements que subissent les cellules épithéliales mammaires au cours du cycle gestation-lactation-sevrage

Rôle de l'axe hypothalamohypophysaire dans le contrôle du développement et de l'activité de la glande mammaire

Rôle de la prolactine, des stéroïdes ovariens et des glucocorticoides sur le développement et l'activité de la glande mammaire

MERCI DE VOTRE ATTENTION