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CHAPTER 1 

VECTOR ANALYSIS FOR ELECTROMAGNETISM 

 

 

1.1. INTRODUCTION 

 

Electromagnetic field theory is the study of forces between charged particles resulting in 

energy conversion or signal transmission and reception. These forces vary in magnitude and 

direction with time and throughout space so that the theory is a heavy user of vector, 

differential, and integral calculus. This chapter presents a brief review that highlights the 

essential mathematical tools needed throughout the text. We isolate the mathematical details 

here so that in later chapters most of our attention can be devoted to the applications of the 

mathematics rather than to its development.  

 

1.2. REPRESENTATION OF A POINT IN SPACE  

1.2.1 Cartesian Coordinate System 
 

In a three-dimensional space, a point can be located as the intersection of three surfaces. 

The three surfaces are described by x = constant, y = constant, z = constant. If these three 

surfaces (in fact, their normal vectors) are mutually perpendicular to each other, we call 

them orthogonal coordinate system Oxyz. In Cartesian coordinate system, a point is located 

by the intersection of the following three surfaces: 

- A plane parallel to the y-z plane (x = constant, normal to the x axis, unit vector ⃗  ) 

- A plane parallel to the x-z plane (y = constant, normal to the y axis, unit vector  ⃗  ) 

- A plane parallel to the x-y plane (z = constant, normal to the z axis, unit vector  ⃗  ) 

This is shown in the figure below. 

The base vectors ( ⃗    ⃗    ⃗  ) meet the following relations: 

 

 ⃗    ⃗    ⃗   

 ⃗    ⃗    ⃗   

 ⃗    ⃗    ⃗   

 

A position vector is defined as a vector that symbolises 

either the position or the location of any given point   

with respect to any arbitrary reference point like the origin 

  of an orthogonal coordinate system Oxyz. The direction 

of the position vector always points from the origin of that 

vector towards a given point. This position vector is expressed as:  

 

 ⃗    ⃗⃗⃗⃗⃗⃗  ⃗    ⃗     ⃗     ⃗   

 

The magnitude or modulus of  ⃗  is calculated by: 

 

                

 

The change in the position vector from a point   to a point     is 

known as the displacement vector. The displacement of an object can 

also be defined as the vector distance between the initial point and 

the final point. This displacement vector is given by: 
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  ⃗    ⃗⃗⃗     ⃗      ⃗      ⃗   

 

His modulus is such that: 

 

   ⃗      ⃗⃗⃗⃗⃗⃗  ⃗                    

 

1.2.2. Cylindrical coordinate system 

 

In cylindrical coordinate systems a point    is the 

intersection of the following three surfaces as shown in the 

following figure. 

 A circular cylindrical surface            

 A half-plane containing the z-axis and making 

angle            with the xz-plane 

 A plane parallel to the xy-plane at           . 

We define a position vector   in the base vectors   ⃗  ,  ⃗  , 

 ⃗   by its coordinate   and by the polar coordinates     of 

its project on the     plane. This position vector is expressed as follow: 

 

  ⃗⃗⃗⃗⃗⃗  ⃗    ⃗     ⃗  {
       
       

  

  ⃗⃗⃗⃗⃗⃗  ⃗        

 

Its displacement vector is given by:  

 

  ⃗⃗⃗⃗⃗⃗  ⃗     ⃗       ⃗      ⃗   

 

(  ⃗⃗⃗ )
 
                

 

1.2.3. Spherical coordinate system 

 

A point   in spherical coordinates is located at the 

intersection of the following three surfaces: 

 A spherical surface centered at the origin with a 

radius            (sphere of constant  ) 

 A right circular cone with its apex at the origin, its axis 

coinciding with the    axis, and having a half-angle   
         (cone of constant  ) 

 A half-plane containing the z-axis and making an 

angle            with the xz-plane (plane of 

constant  ) 

This is shown below. 

 We define a position vector   in the base vectors  ⃗  ,  ⃗  ,  ⃗   by its length      and the 

two angles    . This position vector is expressed as follow: 
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  ⃗⃗⃗⃗⃗⃗  ⃗    ⃗  {
           
           

       

  

  ⃗⃗⃗⃗⃗⃗  ⃗     

 

its displacement vector is given by: 

 

  ⃗⃗⃗     ⃗           ⃗       ⃗   

(  ⃗⃗⃗ )
 
                       

 

1.3. LINE INTEGRALS OF VECTOR FIELD ALONG A PARAMETERIZED CURVE 

 

Line integrals are also called path or contour or curve integrals. A line integral is an 

integral in which the function to be integrated is determined along a curve in the coordinate 

system. The function which is to be integrated may be either a scalar field or a vector field. 

We can integrate a scalar-valued function or vector-valued function along a curve. The value 

of the line integral can be evaluated by adding all the values of points on the vector field. One 

interpretation of the line integral of a vector field is the amount of work that a force field does 

on a particle as it moves along a curve.  

 

1.3.1. Elementary displacement 

 

Let a vector field  ⃗⃗     and a vector element of line length   ⃗⃗⃗⃗⃗⃗ ⃗⃗      ⃗⃗⃗⃗⃗⃗  ⃗ noted also 

  ⃗⃗⃗⃗ . The elementary displacement    of  ⃗⃗     is expressed as: 

 

    ⃗⃗    ⃗⃗⃗⃗⃗⃗  ⃗  
 

1.3.2. Path displacement  

 

We consider a path AB on a curve (C). It is advisable to fix 

the direction of travel on the curve (C). By definition, the 

circulation of a vector denoted  ⃗⃗  around an open curve (C) is 

given the following line integral:  

 

    ∫   
  ̂

 ∫  ⃗⃗ 
  ̂

   ⃗⃗⃗⃗⃗⃗  ⃗ 

 

For a closed curve the same circulation is given by: 

  ∮  ⃗⃗    ⃗⃗⃗⃗⃗⃗  ⃗ 

 

For example, if the vector field is a field of forces, the circulation is nothing but work. 

 

1.3. FLUX OF THE VECTOR 

 

The flux    of  ⃗⃗  through an open surface (S) that is not limited by a certain volume is given 

by: 
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  ∬  ⃗⃗   ⃗⃗   
 

 

 

1.4.1. Elementary flux  

 

The flux of  ⃗⃗  through an elementary oriented surface   ⃗⃗⃗⃗  ⃗ is given by: 

 

    ⃗⃗    ⃗⃗⃗⃗  ⃗   ⃗⃗   ⃗⃗    

 

where  ⃗⃗  is the unit vector normal to the elementary surface   , which 

should be properly oriented, taking into account the conventions that 

will be specified. 

 

 

 

1.4.2. Flux through an open surface 

 

Let (C) be the contour on which the surface (S) rests. Once (C) 

oriented, the direction of the unit vector  ⃗⃗  is defined by the 

corkscrew rule (direction in which the corkscrew advances when it is 

turned in the positive direction chosen on (C)). We then have 

 

  ∬   
 

 ∬  ⃗⃗   ⃗⃗   
 

 

 

1.4.2. Flux through a closed surface 

 

The flux of  ⃗⃗  through a closed surface (S), delimited by a certain volume, is given by: 

 

  ∯  ⃗⃗   ⃗⃗ 
 

   ∯     
 

            

 ⃗⃗  is the normal external to an element of the surface denoted   . 

 

Example: Spherically symmetric field  

Calculate the flux of the vector           ⃗   through a sphere with center O and radius r. 

let f(r) is constant when moving on the sphere. 

We simply have: 

 

  ∯  ⃗⃗   ⃗⃗ 
 

   ∯     
 

            

 

 

1.5. SOLID ANGLE  

 

1.5.1. Elementary solid angle  

 

By definition, the solid angle    under which we 

see an elementary oriented surface   ⃗⃗⃗⃗  ⃗ from a given 
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point   is: 

 

   
  ⃗⃗⃗⃗  ⃗  ⃗  
  

 
      

  
 

 

In the case where the element    is taken on the sphere with center   and radius  , we simply 

have: 

 

   
  

  
 ⃗⃗   ⃗   

  

  
 

 

1.5.2. Solid angle unit 

 

The solid angle through which all space can be seen is: 

  
 

  
∯   

 

 
    

  
               

 

For a half space:                  

 

for a cone with half angle at sommet    : 

 

                         

 

  ∯
  

  
 

 ∫         
  

 

 

 

              
 

 

1.6. VECTOR OPERATORS 

 

1.6.1. Gradient 

 

The operator     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (or also denoted by  ⃗⃗ , polar vector operator nabla) associated with a 

scalar function f (x, y, z) is a vector with components      ⁄      ⁄      ⁄  . 

 

as:  

 

   
  

  
    

  

  
   

  

  
   

 

One can deduced: 

 

       ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗    ⃗⃗⃗⃗⃗⃗  ⃗ 
 

the relationship we use to define the gradient in any coordinate system. 

 

1.5.1.1. Gradient properties  
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A level surface is the locus of points where the scalar function f  is a constant. Level 

surfaces are defined by: f (x,y,z) = cte. 

 

** Gradient direction: 

 

Let a level surface            f . 

 

For a point M moving on this surface, we have: 

 

       ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗    ⃗⃗⃗⃗⃗⃗  ⃗    

The vactor     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  is then normal to the level surface. 

Consider now two points   ,    on two neighboring level surfaces      and 

       . We have : 

             ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗    

The vector     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  is oriented in the direction of increasing values of f. 

 

** Gradient circulation: 

   ̂  ∫     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
  ̂

    ⃗⃗⃗⃗⃗⃗  ⃗  ∫   
    

    

 

∫     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
  ̂

    ⃗⃗⃗⃗⃗⃗  ⃗            

 

It is equal to the variation of the function f  and does not depend on the path taken. 

We say that the circulation of the vector     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  is conservative. This relationship 

sometimes makes it easier to calculate the circulation of a vector along the path. 

 

In the particular case of a closed path, we have: 

 

   ̂  ∮    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗     ⃗⃗⃗⃗⃗⃗  ⃗    

 

** When is a vector field  ⃗⃗  a gradient? 

 

- When the value of its circulation does not depend on the path followed. 

- When  ⃗⃗   ⃗⃗    

- We show that, for a vector  ⃗⃗  to be a gradient field, it is necessary and sufficient 

that the cross partial derivatives of its components are equal two by two, i.e.: 

 
   

  
 

   

  
 
   

  
 

   

  
 
   

  
 

   

  
  

 

1.6.2. Divergence 

 

The operator    ⃗⃗⃗⃗⃗⃗  (or   ⃗⃗  ⃗) associated with a vector  ⃗⃗  is the scalar product of  ⃗⃗  by this 

vector  ⃗⃗  such as:  
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     ⃗⃗    ⃗⃗  ⃗  ⃗⃗  
1.6.2.1. Divergence properties  

 

** Divergence et flux d’un vecteur 

 

By definition, the flux differential    of   ⃗⃗  through an elementary volume    is 

related to the divergence of  ⃗⃗   by: 

 

        ⃗⃗    

 

The divergence of a vector field represents the flow of this vector out of the unit 

volume. We can deduce that: 

 

  ∯  ⃗⃗    ⃗⃗⃗⃗  ⃗
   

 ∭     ⃗⃗   
   

 

 

This formula, known as the Green-Ostrogradsky formula, sometimes facilitates 

the calculation of the flux of a vector through a closed surface. 

 

** Physical meaning of divergence 

 

The divergence of a vector field  ⃗⃗  expresses the volume flux density of this vector 

through a given volume, as explained by Green's theorem above. 

 

1.6.3. Rotational or curl 

The operator    ⃗⃗ ⃗⃗ ⃗⃗   (or  ⃗⃗  ) associated with a vector  ⃗⃗  is the vector product of  ⃗⃗  cross this 

vector: 

   ⃗⃗ ⃗⃗ ⃗⃗    ⃗⃗      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  ⃗⃗   ⃗⃗    ⃗⃗  ⃗ 
1.6.3.1. Curl properties  

 

** Physical meaning of the rotational 

Consider the flow of water in a river whose particle velocity is considered as a vector 

field whose expression is: 

 

 ⃗⃗     ⃗     ⃗   

 

The velocity of the particles varies only as a function of y. If we place a twig of wood 

in the fluid, we observe a rotation effect which is exerted on this twig since the 

movement takes place in the direction of x and the velocity only varies with y. It is as 

if the twig of wood is subjected to a torque of rotation and therefore it will start to turn 

toward itself. The amount of rotation will be ± large. The rotation of the twig can be in 

one direction or in the other. This rotation effect must be represented by a vector 

which measures this amount of rotation and determines the direction of rotation. It can 

only be represented by a vector called the rotational or curl. 
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** Rotational and circulation of vector 

 

By definition, the circulation differential of  ⃗⃗  on a closed contour 

(C) is related to the rotational of  ⃗⃗  by: 

 

      ⃗⃗ ⃗⃗ ⃗⃗    ⃗⃗    ⃗⃗⃗⃗  ⃗ 
 

where dS is an element of any surface (S) that rests on (C). 

This relationship allows us to define the coordinate of the rotational in any direction of the 

unit vector  ⃗⃗ . We can deduce: 

  ∮  ⃗⃗    ⃗⃗⃗⃗⃗⃗  ⃗  
   

∬    ⃗⃗ ⃗⃗ ⃗⃗    ⃗⃗    ⃗⃗⃗⃗  ⃗
   

 

 

This formula, called Stokes formula, sometimes facilitates the calculation of the circulation of 

a vector along a closed contour. 

 

1.7. LAPLACIAN 

 

The Laplacian operator (denoted  ) is defined by: 

 

  
  

   
 

  

   
 

  

   
 

It can be applied to a scalar function: 

 

   
   

   
 

   

   
 

   

   
 

or to a vector : 

 

  ⃗⃗  
   ⃗⃗ 

   
 

   ⃗⃗ 

   
 

   ⃗⃗ 

   
     ⃗       ⃗       ⃗   

The interest of all these vector operators is on the one hand, to allow a concise writing of the 

so-called "local" equations (example: Maxwell's equations), and on the other hand, to 

facilitate the calculations, due to the vector relations which exist between them, and to the 

integral transformations that they allow to perform. 

 

 

 

 

 

 


