Université de Batna 2 Département de Mathématiques L2 SAD S4 Variables aléas multiples 2021/2022

TD 1

Exercice 1

Soient X et Y deux v.a. indépendantes suivant une loi de Bernoulli de même paramètre p. On note U=X+Y et V=X-Y. Calculer le loi de (U,V).

Solution

On sait que

X=x _i	0	1
P=p _i	1-p	р

Y=y _j	0	1
P=p _j	1-p	р

Et donc

$U=X+Y=x_i+y_j$	0	1	2
P_k	$(1-p)^2$	2p(1-p)	p ²

Car $P(U=0)=P(X=0 \cap Y=0)=P(X=0).P(Y=0)$, puisqu'on a indépendance.

De plus

$$P(U=1)=P((X=0 \cap Y=1) \cup (X=1 \cap Y=0)) = P(X=0).P(Y=1) + P(X=1).P(Y=0)$$
 Et ceci grâce à l'indépendance.

$$P(U=2)=P(X=1 \cap Y=1)=P(X=1).P(Y=1).$$

De même

V=X-Y	-1	0	1
p _i	(1-p)p	$(1-p)^2 + p^2$	p(1-p)

 $P(V=-1)=P(X=0 \cap Y=-1)=P(X=0).P(Y=-1)$ toujours grâce à l'indépendance.

Alors

U\V	-1	0	1
0	0	$(1-p)^2$	0
1	p(1-p)	0	p(1-p)
2	0	p ²	0

P(U=0,V=0)=P(X+Y=0,X-Y=0)=P(X=0,Y=0)=(1-p)(1-p).

P(U=1,V=-1)=P(X=0,Y=1) et P(U=1,V=1)=P(X=1,Y=0) et finalement P(U=2,V=0)=P(X=1,Y=1).

Rappelons-nous que dans l'épreuve de Bernoulli X=Y=1 veut dire succès avec une probabilité p.

Exercice 2

Soit un couple de variables aléatoires discrètes dont la loi est donnée par le tableau suivant :

X\Y	1	2	3	4
1	0.08	0.04	0.16	0.12
2	0.04	0.02	0.08	0.06
3	0.08	0.04	0.16	0.12

- 1. Déterminer les lois marginales du couple et préciser si X et Y sont indépendantes.
- 2. Calculer Cov (X; y).
- 3. Déterminer la loi du couple (min(X; Y);max(X;Y)).

Exercice 2

Soit la fonction $f_{XY} = \begin{cases} \frac{1}{4}(x+y)e^{-y}, 0 \le x \le 2 \text{ et } y \ge 0 \\ 0 \text{ sinon} \end{cases}$, vérifier que c'est une densité de probabilité ;

Exercices Supplémentaires

Exercice 1

On se donne la loi de probabilité du couple (X,Y) :

X\Y	-1	1
-1	1/10	3/10
1	5/10	1/10

- 1- Donner les lois marginales de X et Y. Y-t-il indépendance de X et Y?
- 2- Calculer E(X), E(Y), var(X), var(Y) et cov(X,Y).
- 3- Soit S=X+Y et T=X.Y. Donner la loi du couple (S,T) et étudier leur indépendance.
- 4- Calculer par deux méthodes différentes E(S).

Exercice 2

Soit la loi de probabilité

X\Y	-1	0	1
0	1/10	2/10	0
1	0	3/10	1/10
2	2/10	0	1/10

Reprendre les mêmes questions de l'exercice précédent.

Exercice 3

Soient X et Y deux variables aléatoires indépendantes. Donner la loi de la v.a. X+Y lorsque :

- 1- X et Y suivent une loi géométrique de paramètre connu θ .
- 2- X et Y suivent une loi uniforme sur [0,1]. (Mettre (u,v)=(x,x+y)).
- 3- $X \sim N(0, \sigma_1)$, $Y \sim N(0, \sigma_2)$. (Mettre (u,v)=(x+y,x-y)).

Exercice 3

Soit le vecteur aléatoire
$$X=(X_1,X_2,X_3)^T$$
 de densité conjointe
$$f(x_1,x_2,x_3)=\begin{cases} 6x_1x_2^2x_3 & si \ 0 \leq x_1,x_2,x_3 \leq 1 \\ 0 & sinon \end{cases},$$

- 1- Montrez que f est une densité de probabilité.
- 2- Trouvez les densités marginales de X1, X2 et X3 de même que la densité conjointe de (X1;X2).
- 3- Les variables X1, X2 et X3 sont-elles indépendantes ?

Exercice 4

Soit $X = (X, Y)^T$ un couple de variable aléatoire de densité de probabilité

$$f(x,y) = \frac{1}{2\pi} exp\left(-\frac{x^2 + y^2}{2}\right), (x,y) \in \mathbb{R}^2.$$

Déterminer les lois de X, Y, X + Y.