

TD N°=2: Les équilibres Acido-basiques

Exercice 1:

- 1. Donner l'acide conjugué de chaque base : NH₃, HSO₄, C₂O₄².
- 2. Donnez la base conjuguée de chaque acide : HNO₂, CH₂ClCOOH, H₃PO₄, H₂PO₄.
- 3. Indiquez les équations des réactions des acides avec la base H₂O : HI, HNO₃, HF.
- 4. Indiquez les équations des réactions des bases avec l'acide H₂O: HS⁻, PH₂-, F-, CH₃NH₂, H⁻.

Indiquez le couple acide/base conjuguée dans les réactions suivantes :

$$C_6H_5COOH + H_2O \Rightarrow H_3O^+ + C_6H_5COO^ CH_3NH_2 + H_2O \Rightarrow CH_3NH_3^+ + OH^ HCOOH + H_2O \Rightarrow H_3O^+ + HCOOH^-$$

Exercice 3:

- 1. Quelles sont les particules en présence dans une solution aqueuse d'acide sulfurique H₂SO₄.
- 2. Quel est le pH d'une solution dans laquelle C_{OH} = 0.01 mol/L.
- 3. Un certain vinaigre a un pH=2.8. Que valent C_{H3O^+} et C_{OH^-} .
- **4.** Calculez le pH des solutions suivantes :
 - a. HBr

- b. KOH 0.1 mol/L
- c. $CH_3COOH\ 0.1\ mol/L$, $Ka = 1.78.10^{-5}\ mol/L$ d. $NH_3\ 0.1\ mol/L$, $Ka\ (NH_4^+/NH_3) = 6.03.10^{-10}\ mol/L$

Exercice 4:

L'acide trichloracétique CCl₃COOH (liquide) a une constante Ka = 2.3 .10⁻¹ mol/L à 25°C. Calculer le pH d'une solution ou l'on a dissous 0.010 mol/L d'acide.

Exercice 5:

On mélange 50 mL d'une solution de CH₃COOH 1 mol/L avec 50 mL d'une solution de NaCH₃COO 0.1 mol/L. Calculer le pH de cette solution tampon.

Pka $_{\text{CH3COOH/CH3COO}}$ = 4.75

Exercice 6:

Expliquez en détail comment vous préparez une solution tampon à pH = 3.

On propose:

Acide chloracétique ClCH₂COOH, pka = 2.86.

Acide fluorhydrique HF, pka = 3.17.

Acide nitreux HNO_2 , pka = 3.34.

Exercice 7:

On considère les solutions suivantes : S1 : Acide nitrique HNO₃, S2 : Acide nitrux HNO₂ et S3 : la soude

NaOH. Les 3 solutions ont la même concentration C = 0.1 M. On considère les mélanges suivants :

Mélange 1 : 100 ml de S1 + 100 ml de S3

Mélange 2 : 100 ml de S2 + 100 ml de S3

On donne pKa $(HNO_2/NO_2^-) = 3.35$

Calculer le pH des solutions des mélanges 1et 2.