University of Batna 2

Faculty of Mathematics and Computer Science

Departement of Mathematics

Chapter 01: Real Numbers \mathbb{R}

By: Brahimi Mahmoud

Academic year 2024/2025

Chapitre 1 Usual sets of numbers

Usual sets of numbers

Among the different types of numbers:

- \triangleright $\mathbb{N} = \{0, 1, 2, ...\}$ the set of natural numbers
- ▶ $\mathbb{Z} = (\mathbb{N}) \cup (-\mathbb{N}) = \{\dots, -2, -1, 0, 1, 2, \dots\}$ set of relative integers
- ▶ $\mathbb{Q} = \{\frac{p}{q} \text{ where } p \in \mathbb{Z}, q \in \mathbb{N}^* \text{ and } p, q \text{ are coprime } p \land q = 1\}$ set of rational numbers.
- ➤ The set of real numbers, denoted \mathbb{R} was introduced to complete the set \mathbb{Q} of rational numbers we say that x is a real number if and only if either $x \in \mathbb{Q}$ or $x \notin \mathbb{Q}$, x is said to be irrational number $x \in (\mathbb{R} \mathbb{Q})$.
- $\succ \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$
- ➤ These private sets of 0 are respectively noted by \mathbb{N}^* , \mathbb{Z}^* , \mathbb{Q}^* , \mathbb{R}^* .

Axiomatic definition of real numbers

The set \mathbb{R} equipped with two internal laws, addition (+), multiplication (×) or (.) and a relation of comparison of the elements of \mathbb{R} noted (<) (less than or equal) satisfies the following axioms:

 $(\mathbb{R}, +)$ is a commutative group, that's to say

- For all $x, y, z \in \mathbb{R}$, (x + y) + z = x + (y + z) (associativity of addition)
- For all $x, y \in \mathbb{R}$, x + y = y + x (commutativity of addition)
- For all $x \in \mathbb{R}$, x + 0 = x (0 neutral element)
- For all $x \in \mathbb{R}$, there exists an element $-x \in \mathbb{R}$ such that x + (-x) = 0.

 $(\mathbb{R}^*, .)$ is a commutative group, that's to say

- For all $x, y, z \in \mathbb{R}$, (x, y), z = x. (y, z) (associativity of multiplication)
- For all $x, y \in \mathbb{R}$, x. y = y. x (commutativity of multiplication)
- For all $x \in \mathbb{R}$, $x \cdot 1 = x$ (1 neutral element)
- ➤ For all $x \in \mathbb{R}^*$, there exists an element $x^{-1} = \frac{1}{x} \in \mathbb{R}$ such that $x \cdot x^{-1} = 1$.

Multiplication is distributive with respect to addition, i.e:

For all x, y and $z \in \mathbb{R}$; x. (y + z) = x. y + x. z

 (\mathbb{R}, \leq) is totally ordered, i.e.

- For all $x \in \mathbb{R}$, we have: $x \le x$ (Reflexivity)
- For all $x, y \in \mathbb{R}$ we have: if $x \le y$ and $y \le x$ then x = y (Antisymmetry)
- For all $x, y, z \in \mathbb{R}$ we have: if $x \le y$ and $y \le z$ then $x \le z$ (Transitivity)
- For all $x, y \in \mathbb{R}$ we have: $x \le y$ or $y \le x$ (Total order)

Relation (\leq) is compatible with addition and multiplication, i.e.

For all $x, y, x', y' \in \mathbb{R}$ checking $(x \le y \text{ and } x' \le y')$ then $x + x' \le y + y'$ (compatibility of the addition)

- For all $x, y, x', y' \in \mathbb{R}_+$ checking $(x \le y \text{ and } x' \le y')$ then $x, x' \le y, y'$ (compatibility of multiplication)
- ➤ The relation $(x \le y \text{ and } x \ne y)$ for all $x, y \in \mathbb{R}$ means that x < y
- A real number x is said to be strictly positive if 0 < x, the set of strictly positive real numbers is denoted by ℝ^{*}₊ =]0, +∞[
- A real number x is said to be strictly negative if x < 0, the set of strictly negative real numbers is denoted by ℝ^{*}_− =] −∞, 0[
- For all $x, y \in \mathbb{R}$, we write x y instead of x + (-y) and xy instead x, y

Notion of interval in \mathbb{R}

- A non-empty part *E* of \mathbb{R} is an interval if and only if, for all $x, y \in \mathbb{R}$ verifies x < y there exists $z \in E$ such that x < z < y.
- If a, b and x₀ denote real numbers such that a < x₀ < y the open intervals of ℝ are]a, b[,]a, +∞[,] -∞, a[and ℝ =] -∞, +∞[, the intervals which are neither closed nor open are [a, b[and]a, b].</p>
- ▶ If a = b; $[a, a] = \{a\}$ and $]a, a[= \emptyset$.
- > a and b are called the limits of the interval and (b a) its length.
- ▶ The total order relation (≤) allows to define the absolute value function in \mathbb{R} .

Absolute value in \mathbb{R}

Definition

The absolute value in \mathbb{R} is a function denoted |.| defined from \mathbb{R} to \mathbb{R} by: for all $x \in \mathbb{R}, |x| = \max(x, -x)$, i.e: $|x| = \begin{cases} x, \text{ if } x \ge 0; \\ -x, \text{ if } x < 0. \end{cases}$

For all $x, y \in \mathbb{R}$, we have: $\begin{array}{l} & |x| = 0 \Leftrightarrow x = 0 \\ & |xy| = |x||y| \text{ in particular } |x|^2 = |x^2| = x^2 \\ & |x| \le \alpha \Leftrightarrow -\alpha \le x \le \alpha \\ & |x+y| \le |x|+|y| \\ & ||x|-|y|| \le |x-y| \\ & ||x| - |y|| \le |x-y| \\ & |x| \ge \alpha \Leftrightarrow x \in] - \infty, \alpha] \cup [\alpha, +\infty[
\end{array}$

Bounded part in \mathbb{R}

Definition

Let *E* be a non-empty subset of \mathbb{R} , we say that:

 \succ $M \in \mathbb{R}$ is an upper bound of *E* if, for all $x \in E, x \leq M$.

The smallest of the majorants when it exists is called the **upper bound** of E. It is a maximum if it belongs to E. it is noted supE or maxE.

 $\rightarrow m \in \mathbb{R}$ is a lower bound of *E* if, for all $x \in E$, $m \leq x$.

The largest of the lower bounds when it exists is called the **lower bound** of E, it is noted inf*E*. It is a minimum if it belongs to *E* and it is noted min*E*.

Remark

 $\sup E$ and $\inf E$ when they exist are unique and $[\inf E, \sup E]$ is the smallest closed interval containing *E*.

Upper Bound Axiom

Every non-empty part of ${\mathbb R}$ and bounded above admits an upper bound.

```
Remark
```

Every non-empty part of ${\mathbb R}$ and bounded below has a lower bound.

Proposition Let *E* be a bounded subset of \mathbb{R} , M and $m \in \mathbb{R}$, then:

$$M = \sup E \Leftrightarrow \begin{cases} For all \ x \in E, x \le M \\ For all \ \varepsilon > 0, there exists \ x_0 \text{ such as } M - \varepsilon < x_0 \end{cases}$$

 $\succ m = \inf E \Leftrightarrow \begin{cases} \text{For all } x \in E, m \le x \\ \text{For all } \varepsilon > 0, \text{ there exists } x_0 \text{ such as } x_0 < m + \varepsilon \end{cases}$

Examples:

- ★ $E = \{-1, 0, 1\}, \min E = -1, \max E = 1$ ★ $E = [0, 1], \min E = 0, \max E = 1$ ★ $E = [0, 1[, \min E = 0, \sup E = 1]$ ★ $E = [0, 1], \inf E = 0, \max E = 1$
- ♦ E =]0, 1[, infE = 0, supE = 1]

Archimedes' Axiom

Proposition

For all $x, y \in \mathbb{R}^*$, there exists $n \in \mathbb{N}^*$ such that nx > y (\mathbb{R} is Archimedean).

Remark

N is unbounded above, therefore Z is unbounded (it suffices to take x = 1 in the Archimedes axiom).

Completed number line $\overline{\mathbb{R}}$

Definition

We call the completed number line \mathbb{R} the set obtained by adding to \mathbb{R} the two distinct elements $-\infty$ and $+\infty$ verifying, for all $x \in \mathbb{R}, -\infty \le x \le +\infty$ ($\mathbb{R} = \mathbb{R} \cup] -\infty, +\infty[$)

Operations on \mathbb{R} extend partly to $\overline{\mathbb{R}}$ by setting

For all
$$x \in \overline{\mathbb{R}}$$
, $\begin{cases} x + (+\infty) = (+\infty) + x \\ x + (-\infty) = (-\infty) + x \end{cases}$

- For all $x \in \overline{\mathbb{R}}$, $x(-\infty) = (-\infty)x = \begin{cases} -\infty, & \text{if } x > 0 \\ +\infty, & \text{if } x < 0 \end{cases}$

$$\succ (+\infty) + (+\infty) = +\infty, (-\infty) + (-\infty) = -\infty, (+\infty)(+\infty) = +\infty,$$

$$(-\infty)(-\infty) = +\infty, (-\infty)(+\infty) = -\infty.$$

Remark

The sum $(+\infty) + (-\infty)$ and the product $0(+\infty)$ are not defined.

Reasoning by recurrence

The recurrence principle allows us to show that an assertion P(n), depending on naturel number n, is true for all $n \in \mathbb{N}$, the demonstration by recurrence takes place in two steps:

- We prove P(n) is true for $n = n_0$ (initial condition)

- We assume P(n) is true and we show that P(n + 1) is true (final condition).

Once this is established, we conclude that P(n) is true for all $n \ge n_0$.

Example:

Show that $\forall n \ge 1$; $1 + 2 + ... n = \frac{n(n+1)}{2}$.