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Chapitre 1 Usual sets of numbers 

Usual sets of numbers 

    Among the different types of numbers: 

 ℕ = {0, 1, 2, . . . } the set of natural numbers 

 ℤ = (ℕ) ∪ (−ℕ) = {. . . , −2, −1, 0, 1, 2, . . . } set of relative integers 

 ℚ = {
𝑝

𝑞
 where 𝑝 ∈ ℤ, 𝑞 ∈ ℕ∗ and 𝑝, 𝑞 are coprime 𝑝 ∧ 𝑞 = 1} set of rational 

numbers. 

 The set of real numbers, denoted ℝ was introduced to complete the set ℚ of rational 

numbers we say that 𝑥 is a real number if and only if either 𝑥 ∈ ℚ or 𝑥 ∉ ℚ, 𝑥 is said 

to be irrational number 𝑥 ∈ (ℝ − ℚ). 

 ℕ ⊂ ℤ ⊂ ℚ ⊂ ℝ 

 These private sets of 0 are respectively noted by ℕ∗, ℤ∗, ℚ∗, ℝ∗. 

 Axiomatic definition of real numbers 

    The set ℝ equipped with two internal laws, addition (+), multiplication (×) or (. ) and a 

relation of comparison of the elements of ℝ noted (<) (less than or equal) satisfies the 

following axioms: 

    (ℝ, +) is a commutative group, that's to say 

 For all 𝑥, 𝑦, 𝑧 ∈ ℝ, (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) (associativity of addition) 

 For all 𝑥, 𝑦 ∈ ℝ, 𝑥 + 𝑦 = 𝑦 + 𝑥 (commutativity of addition) 

 For all 𝑥 ∈ ℝ, 𝑥 + 0 = 𝑥 (0 neutral element) 

 For all 𝑥 ∈ ℝ, there exists an element −𝑥 ∈ ℝ such that 𝑥 + (−𝑥) = 0. 

    (ℝ∗, . ) is a commutative group, that's to say 

 For all 𝑥, 𝑦, 𝑧 ∈ ℝ, (𝑥. 𝑦). 𝑧 = 𝑥. (𝑦. 𝑧) (associativity of multiplication) 

 For all 𝑥, 𝑦 ∈ ℝ, 𝑥. 𝑦 = 𝑦. 𝑥 (commutativity of multiplication) 

 For all 𝑥 ∈ ℝ, 𝑥. 1 = 𝑥 (1 neutral element) 

 For all 𝑥 ∈ ℝ∗, there exists an element 𝑥⁻¹ =
1

𝑥
∈ ℝ such that 𝑥. 𝑥⁻¹ = 1. 

    Multiplication is distributive with respect to addition, i.e: 

 For all 𝑥, 𝑦 and 𝑧 ∈ ℝ; 𝑥. (𝑦 + 𝑧) = 𝑥. 𝑦 + 𝑥. 𝑧 

    (ℝ, ≤) is totally ordered, i.e: 

 For all 𝑥 ∈  ℝ, we have: 𝑥 ≤ 𝑥 (Reflexivity) 

 For all 𝑥, 𝑦 ∈ ℝ we have: if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 then 𝑥 = 𝑦 (Antisymmetry) 

 For all 𝑥, 𝑦, 𝑧 ∈  ℝ we have: if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 then 𝑥 ≤ 𝑧 (Transitivity) 

 For all 𝑥, 𝑦 ∈  ℝ we have: 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥 (Total order) 

    Relation (≤) is compatible with addition and multiplication, i.e: 

 For all 𝑥, 𝑦, 𝑥′, 𝑦′ ∈ ℝ checking (𝑥 ≤ 𝑦 and 𝑥′ ≤  𝑦′) then 𝑥 + 𝑥′ ≤ 𝑦 +  𝑦′ 
(compatibility of the addition) 



 For all 𝑥, 𝑦, 𝑥′, 𝑦′ ∈ ℝ₊ checking (𝑥 ≤ 𝑦 and 𝑥′ ≤  𝑦′) then 𝑥. 𝑥′ ≤ 𝑦 . 𝑦′ 

(compatibility of multiplication) 

 The relation (𝑥 ≤ 𝑦 and 𝑥 ≠ 𝑦) for all 𝑥, 𝑦 ∈  ℝ means that 𝑥 < 𝑦 

 A real number 𝑥 is said to be strictly positive if 0 < 𝑥, the set of strictly positive real 

numbers is denoted by ℝ+
∗ =]0, +∞[ 

 A real number 𝑥 is said to be strictly negative if 𝑥 < 0, the set of strictly negative 

real numbers is denoted by ℝ−
∗ =] − ∞, 0[ 

 For all 𝑥, 𝑦 ∈  ℝ, we write 𝑥 − 𝑦 instead of 𝑥 + (−𝑦) and 𝑥𝑦 instead 𝑥. 𝑦 

Notion of interval in ℝ 

 A non-empty part 𝐸 of ℝ is an interval if and only if, for all 𝑥, 𝑦 ∈  ℝ verifies 𝑥 < 𝑦 

there exists 𝑧 ∈ 𝐸 such that 𝑥 < 𝑧 < 𝑦. 

 If 𝑎, 𝑏 and 𝑥₀ denote real numbers such that 𝑎 < 𝑥₀ < 𝑦 the open intervals of ℝ are 

]𝑎, 𝑏[, ]𝑎, +∞[, ] − ∞, 𝑎[ and ℝ =] − ∞, +∞[, the intervals which are neither closed 

nor open are [𝑎, 𝑏[ and ]𝑎, 𝑏]. 

 If 𝑎 = 𝑏; [𝑎, 𝑎] = {𝑎} and ]𝑎, 𝑎[= ∅. 

 𝑎 and 𝑏 are called the limits of the interval and (𝑏 − 𝑎) its length. 

 The total order relation (≤) allows to define the absolute value function in ℝ. 

 

Absolute value in ℝ 

Definition 

The absolute value in ℝ is a function denoted |. | defined from ℝ to ℝ by: for all 

 𝑥 ∈  ℝ, |𝑥| = max(𝑥, −𝑥), i.e: |𝑥| = {
𝑥, if 𝑥 ≥ 0;

−𝑥, if 𝑥 < 0.
 

 

 

Proposition 

For all 𝑥, 𝑦 ∈  ℝ, we have: 

 |𝑥| = 0 ⇔ 𝑥 = 0 
 |𝑥𝑦| = |𝑥||𝑦| in particular |𝑥|² = |𝑥²| = 𝑥² 
 |𝑥| ≤ 𝛼 ⇔ −𝛼 ≤ 𝑥 ≤ 𝛼 
 |𝑥 + 𝑦| ≤ |𝑥| + |𝑦| 
 ||𝑥| − |𝑦|| ≤ |𝑥 − 𝑦| 
 |𝑥| ≥ 𝛼 ⇔ 𝑥 ∈] − ∞, 𝛼] ∪ [𝛼, +∞[ 

 

 

 

 

 

 



Bounded part in ℝ 

Definition 

Let 𝐸 be a non-empty subset of ℝ, we say that: 

 𝑀 ∈ ℝ is an upper bound of 𝐸 if, for all 𝒙 ∈ 𝑬, 𝒙 ≤ 𝑴. 
The smallest of the majorants when it exists is called the upper bound of 𝐸. It is a 

maximum if it belongs to 𝐸. it is noted sup𝐸 or max𝐸. 

 𝑚 ∈ ℝ is a lower bound of 𝐸 if, for all 𝒙 ∈ 𝑬, 𝒎 ≤ 𝒙. 
The largest of the lower bounds when it exists is called the lower bound of 𝐸, it is noted 

inf𝐸. It is a minimum if it belongs to 𝐸 and it is noted min𝐸. 
 

 

Remark 

sup𝐸 and inf𝐸 when they exist are unique and [inf𝐸, sup𝐸] is the smallest closed interval 

containing 𝐸. 

 

Upper Bound Axiom 

Every non-empty part of ℝ and bounded above admits an upper bound. 

Remark 

Every non-empty part of ℝ and bounded below has a lower bound. 

 

 

Proposition 

Let 𝐸 be a bounded subset of ℝ, M and 𝑚 ∈ ℝ, then: 

 

 

 𝑀 = supE ⇔ {
For all 𝑥 ∈ 𝐸, 𝑥 ≤ 𝑀 

For all 𝜀 > 0, there exists 𝑥0 such as 𝑀 − 𝜀 < 𝑥0
 

 

 

 𝑚 = inf𝐸 ⇔ {
For all 𝑥 ∈ 𝐸, 𝑚 ≤ 𝑥

For all 𝜀 > 0, there exists 𝑥0 𝑠uch as 𝑥0 < 𝑚 + 𝜀
 

 

 

 

Examples: 

 𝐸 = {−1, 0, 1}, minE = −1, maxE = 1 

 𝐸 = [0, 1], minE = 0, maxE = 1 

 𝐸 = [0, 1[, minE = 0, supE = 1 

 𝐸 =]0, 1], infE = 0, maxE = 1 

 𝐸 =]0, 1[, infE = 0, supE = 1 

 



Archimedes' Axiom 

Proposition 

For all 𝑥, 𝑦 ∈ ℝ∗, there exists 𝑛 ∈ ℕ∗ such that 𝑛𝑥 > 𝑦 (ℝ is Archimedean). 

 

 

Remark 

ℕ is unbounded above, therefore ℤ is unbounded (it suffices to take 𝑥 = 1 in the 

Archimedes axiom). 

 

 

Completed number line ℝ̅ 

Definition 

We call the completed number line ℝ the set obtained by adding to ℝ the two distinct 

elements −∞ and +∞ verifying, for all 𝑥 ∈ ℝ̅, −∞ ≤ 𝑥 ≤ +∞ (ℝ̅ = ℝ ∪] − ∞, +∞[) 

 

 

    Operations on ℝ extend partly to ℝ̅ by setting 

 

 For all 𝑥 ∈ ℝ̅, {
𝑥 + (+∞) = (+∞) + 𝑥
𝑥 + (−∞) = (−∞) + 𝑥

 

 

 For all 𝑥 ∈ ℝ̅, 𝑥(+∞) = (+∞)𝑥 = {
+∞,   if 𝑥 > 0
−∞,   if 𝑥 < 0

 

 

 

 For all 𝑥 ∈ ℝ̅, 𝑥(−∞) = (−∞)𝑥 = {
−∞,   if 𝑥 > 0
+∞,   if 𝑥 < 0

 

 

 (+∞) + (+∞) = +∞, (−∞) + (−∞) = −∞, (+∞)(+∞) = +∞,  

 
(−∞)(−∞) = +∞, (−∞)(+∞) = −∞. 

Remark 

The sum (+∞) + (−∞) and the product 0(+∞) are not defined. 

 

 

 

 

 



Reasoning by recurrence 

The recurrence principle allows us to show that an assertion 𝑃(𝑛), depending on naturel 

number 𝑛, is true for all 𝑛 ∈  ℕ, the demonstration by recurrence takes place in two steps:  

- We prove 𝑃(𝑛) is true for 𝑛 = 𝑛0  (initial condition) 

- We assume  𝑃(𝑛) is true and we show that  𝑃(𝑛 +  1) is true (final condition).  

Once this is established, we conclude that 𝑃(𝑛) is true for all 𝑛 ≥ 𝑛0. 

Example: 

Show that ∀𝑛 ≥ 1; 1 + 2+. . . 𝑛 =
𝑛(𝑛+1)

2
. 

 


