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1 Internal composition law

Definition |
Let E be a set, an internal composition law on E in a map of E X E on E, we denote the
internal composition law by: *, A, T, ...And we write

«EXE—>E
(x,y) — x *y

Examples:

(+) and (x) are internal composition laws on N.

(—) and (=) are an internal composition laws on N.

Properties of an internal composition law

Definition |

Let * be an internal law on a set E. We say that

The law * is commutative if forall x,y € E: (x * y = y * x).
The law = is associative if forall x,y,z € E:
((x xy) xz =x * (y * 2)).
e of is an identity element for the law = if for all x € E.
(xxe=¢ex*x =Xx)
x has an inverse element x’ for the law x, if: (x = x' = x" * x = ¢) hold
* is distributive with respect to A if for all elements x,y,z € E;
x*x (yAz) = (x *y)A(x * z)and (xAy) * z = (x * 2) A (y * z)

Example:

Let * be an internal law on E = R — {—1} defined by: Vx,y EE;x *y = x + y + xy.

* IS commutative, associative, has an identity element and each element has an inverse

element.

Let = be an internal law on a set E, if * has an identity element, it is unique

2 Groups

Let = be an internal law on a set G, we say that (G,*) is a group if the following properties
are satisfied:

>

* |S associative

» = has an identity element
» Each element in G has an inverse




If  is commutative we say that (G,*) is a commutative group or abelian group.

Example:
Let x be an internal law on G = Rdefined by: Vx,y € G;x xy =x+y—1
Show that (G,*) is a commutative group.

Subgroup
Let (G,*) be a group

A subpart H < G is a subgroup of G if:
> e € H,
» Forallx,y € Hwehavex  y € H,

> Forallx € H,we have x’ € H.

To show that H is a subgroup it suffices to show that:
» H=+#0@that’'stosaye € H
> Vx,yeEH=xx*y €H

Example:

H ={z € C; |z| = 1}, (H, X) isasubgroup of (C*,x)

Group homomorphism

Definition

Let (G,*) and (G',A) be two groups. Amap f : G — G’ is a group morphism if:
Forall x,x" € G; f(x » x") = f(x)Af (x)

Example:
fi(R,+) — (R*, %), f(x) = e* isagroup morphism.

Properties

Let f: G — G'agroup morphism, then:
> f(eg) =eg )
» Forallx e G, f(x') = (f(x))




Example:

f: (R}, %) = (R,+), f(x) =Inx

> Let there be two group morphisms f : G — G'andg: G' — G".
Theng o f: G — G'"isagroup morphism.
» Iff: G — G'isa bijective morphism then f~* : ¢’ — G is also a group
morphism.

Group isomorphism

Definition |
A bijective morphism is an isomorphism. Two groups G, G' are isomorphic if there exists a
bijective morphism f : ¢ — G'.

Example:

f: (R;,x) — (R, +), f(x) = Inx is group isomorphism.

.. Z
Finite — groups
The set and the % group

Letn > 1. Remember that % is the set % =1{0,1,2,...,n — 1} where p denotes the
equivalence class of p modulo n, in other words p = § < p = q(modn).

Orp=q&e 3k e€Zp=q+kn.

Examples:
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An addition on % isdefinedby:p+g=p+¢q
The product on % isdefinedby: p X q=pxq
Example:
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10x5=10%x5=50=2,7xXx5=7x5=235=11.

(%, +) is a commutative group.




+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 5=0
2 2 3 4 5=0 |6=1
3 3 4 5=0 6=1 |7=2
4 4 5=0 6=1 7=2 |8=3
+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

S5 Permutation group

The set of bijections from {1, 2,..., n} into itself, equipped with the composition of
functions, is a group, denoted (S,,, °).

A bijection from {1,2,...,n} (into itself) is called a permutation. The group (S,, ©) is
called the permutation group (or the symmetric group)

| Lemma

The number of permutations S,, is n!

Notation and examples

Describing a permutation f : {1,2,...,n} — {1,2,...,n}is equivalent to giving the images
of each i going from 1 to n. We therefore denote f by

[fl 2 n ]

® f@ .. f(w

In this case we will study in detail the group S5 of permutations of {1,2,3}. We know that S5
has 3! = 6 elements that we list



o id= 1 g g identity

o T, = 1 g 3 a transposition

o T, = é g i a second transposition
o T3 = % i g a third transposition
e o= B g ﬂ acycle

_ 1 2 3 :

1 _—

o= [3 1 2] the reverse of the previous cycle
Then S; = {id, 4,75, 73,0, 01}

Let's calculate t; ccand g o 7,

1 2 3 1 2 3

T,00=1|2 3 1=[1 2 3]=T2andao‘rl=1 3 2=[1 2 3]=T3

3 21
3 21 2 1 3

We have 7; o g # g o 7, then the group is not commutative. Generally, the group S,,,n = 3 is
not commutative.

Table of the S5 group

gof id T, Ty T3 o o1
id id T, Ty T3 o g1
T, T, id o o1 T, T3
T T, o1 id o T3 T4
T3 T3 o o1 id T, Ty
o o T3 T, T, o! id
o1 o1 T, T3 T, id o
3 The Rings

Let + and x be two internal laws on a set A, we say that (4, +,x) is a ring if the following
properties are satisfied:

> (A, +) is acommutative group whose identity element will be noted 0,4
» The law X is associative
» X is distributive with respect to +

» The ring is commutative if X is commutative
» Unitary if x has an identity element 1,




Examples:

(Z, +,%), (R, +,%), (C, +,%x) are commutative rings
Calculation rules in a ring

Let (4, +,%) be aring and let x, y € A then

o xX0,=04%Xx=04
e Foralln € Z;n(ab) = (na)b = a(nb)
e (—a)(—=b)=ab
e If a and b commute,
(a+b)* =Yr=nckakpn=* and a™ — b™ = (a — b) Y X=N"1ghpn-1-k

Subring

If Aisaring and B is a subring of A, we say that B is a subring of A if B is stable for the +
and x laws and if B has the + and X laws is a ring.

A part B of the ring A is a subring of A if and only if:
> 1,€B
> Va,beB;a—beB
> Va,b€EB;aXb€B

Invertible elements

In aring 4, not all elements a € A necessarily has an inverse for the x law. When this is the
case, we say that a is invertible and we denote its inverse a~1. The set of invertible elements
of the ring is denoted U (A). It is a group for the x law.

Zero divisors

Let A be aring.
» A non-zero element a of A is called a zero divisor if there exists another non-zero
element b of A such that ab = 0.
» If A is a commutative ring not reduced to {0} and if A does not have a zero divisor,
then we say that A is integral. Or integral domain.

Example:

In %we have 2 x 3 =0hut2 # 0 and 3 # 0, 2 and 3 are zero divisors.



Ring homomorphism

Let A4, B be two rings. An application f: A — B is a ring morphism if the following
conditions are satisfied:

> f(1) =1

> Foralla,b € A;f(a+b) =f(a)+ f(b)

> Foralla,b € A;f(axb) = f(a) X f(b)

If f is bijective we say that f: A — B is a ring isomorphism.

For a ring morphism f: A — B we have

> f(0,) =0p
» ForallneZanda € 4; f(na) = nf(a)

Ideals

Let A be a commutative ring. A subset I of A is an ideal if (I, +) is a group and if, for all
ac€Aandallu e, thenau € I.

A part I of A is an ideal if and only if I is non-empty and satisfies:

> Forallx,yel;)x—ye€el
» Forallxelandforalla€e A;ax €1

Let  and J be two ideals of A. Then I nJ and I + ] are two ideals of A.

4 Field

A field is a commutative ring in which every non-zero element is invertible

Examples:

e (R, +,%), (C, +,%) are fields
e (Z,+,x)isnota field



. (p% — {0}, +,x) is a field, where p is prime number, as a particular case we take p = 5
then

7 == = = —

= 0,1,2,3,4}
+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3
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