University of Batna 2

Faculty of Mathematics and Computer Science

Departement of Mathematics

Chapter 04: Algebraic structures

By : Brahimi Mahmoud

$a \times (b + c) = a \times b + a \times c$

Academic year 2024/2025

1 Internal composition law

Definition

Let *E* be a set, an internal composition law on *E* in a map of $E \times E$ on *E*, we denote the internal composition law by: *, Δ , T, ...And we write

 $*: E \times E \longrightarrow E$ $(x, y) \longmapsto x * y$

Examples:

(+) and (×) are internal composition laws on \mathbb{N} .

(-) and (\div) are an internal composition laws on \mathbb{N} .

Properties of an internal composition law

Definition

Let * be an internal law on a set *E*. We say that

- The law * is commutative if for all $x, y \in E$: (x * y = y * x).
- The law * is associative if for all $x, y, z \in E$:
- ((x * y) * z = x * (y * z)).
- *e* of is an identity element for the law * if for all $x \in E$: (x * e = e * x = x)
- x has an inverse element x' for the law *, if: (x * x' = x' * x = e) hold
- * is distributive with respect to Δ if for all elements $x, y, z \in E$;
 - $x * (y \Delta z) = (x * y) \Delta (x * z)$ and $(x \Delta y) * z = (x * z) \Delta (y * z)$

Example:

Let * be an internal law on $E = \mathbb{R} - \{-1\}$ defined by: $\forall x, y \in E$; x * y = x + y + xy.

* is commutative, associative, has an identity element and each element has an inverse element.

Proposition

Let * be an internal law on a set E, if * has an identity element, it is unique

2 Groups

Definition

Let * be an internal law on a set G, we say that (G,*) is a group if the following properties are satisfied:

- ➤ * is associative
- ➤ * has an identity element
- \succ Each element in *G* has an inverse

Remark

If * is commutative we say that (G,*) is a commutative group or abelian group.

Example:

Let * be an internal law on $G = \mathbb{R}$ defined by: $\forall x, y \in G$; x * y = x + y - 1

Show that (*G*,*) is a commutative group.

Subgroup

Let (G,*) be a group

Definition

A subpart $H \subset G$ is a subgroup of G if: $\triangleright e \in H$, \triangleright For all $x, y \in H$, we have $x \star y \in H$, \triangleright For all $x \in H$, we have $x' \in H$.

Remark

To show that *H* is a subgroup it suffices to show that:

- → $H \neq \emptyset$ that's to say $e \in H$
- $\flat \quad \forall x, y \in H \Longrightarrow x * y' \in H$

Example:

 $H = \{z \in \mathbb{C}^*; |z| = 1\}, (H, \times) \text{ is a subgroup of } (\mathbb{C}^*, \times)$

Group homomorphism

Definition

Let (G, \star) and (G', Δ) be two groups. A map $f : G \to G'$ is a group morphism if: For all $x, x' \in G$; $f(x \star x') = f(x) \Delta f(x')$

Example:

 $f: (\mathbb{R}, +) \to (\mathbb{R}^*, \times), f(x) = e^x$ is a group morphism.

Properties

Proposition Let $f : G \rightarrow G'$ a group morphism, then:

$$\succ$$
 f(e_G) = e_{G'}

For all $x \in G$, f(x') = (f(x))'

Example:

 $f: (\mathbb{R}^*_+, \times) \longrightarrow (\mathbb{R}, +), f(x) = \ln x$

Proposition

➤ Let there be two group morphisms f: G → G' and g: G' → G''.
Then g ∘ f: G → G'' is a group morphism.
➤ If f: G → G' is a bijective morphism then f⁻¹: G' → G is also a group morphism.

Group isomorphism

Definition

A bijective morphism is an isomorphism. Two groups G, G' are isomorphic if there exists a bijective morphism $f : G \rightarrow G'$.

Example:

 $f: (\mathbb{R}^*_+, \times) \to (\mathbb{R}, +), f(x) = \ln x$ is group isomorphism.

Finite $\frac{\mathbb{Z}}{n\mathbb{Z}}$ groups

The set and the $\frac{\mathbb{Z}}{n\mathbb{Z}}$ group

Let $n \ge 1$. Remember that $\frac{\mathbb{Z}}{n\mathbb{Z}}$ is the set $\frac{\mathbb{Z}}{n\mathbb{Z}} = \{\overline{0}, \overline{1}, \overline{2}, ..., \overline{n-1}\}$ where \overline{p} denotes the equivalence class of p modulo n, in other words $\overline{p} = \overline{q} \iff p \equiv q \pmod{n}$.

Or $\overline{p} = \overline{q} \iff \exists k \in \mathbb{Z}, p = q + kn$.

Examples:

 $\frac{\mathbb{Z}}{3\mathbb{Z}} = \{\overline{0}, \overline{1}, \overline{2}\}, \frac{\mathbb{Z}}{6\mathbb{Z}} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$

An addition on $\frac{\mathbb{Z}}{n\mathbb{Z}}$ is defined by: $\overline{p+q} = \overline{p} + \overline{q}$

The product on $\frac{\mathbb{Z}}{n\mathbb{Z}}$ is defined by: $\overline{p \times q} = \overline{p} \times \overline{q}$

Example:

On $\frac{\mathbb{Z}}{12\mathbb{Z}}$ we have $\overline{10} + \overline{5} = \overline{10 + 5} = \overline{15} = \overline{3}, \overline{7} + \overline{5} = \overline{7 + 5} = \overline{12} = \overline{0}.$ $\overline{10 \times 5} = \overline{10 \times 5} = \overline{50} = \overline{2}, \overline{7} \times \overline{5} = \overline{7 \times 5} = \overline{35} = \overline{11}.$

Theorem $\left(\frac{\mathbb{Z}}{n\mathbb{Z}},+\right)$ is a commutative group.

Example: $\frac{\mathbb{Z}}{5\mathbb{Z}} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$

+	$\overline{0}$	1	$\overline{2}$	3	$\overline{4}$
$\overline{0}$	$\overline{0}$	$\overline{1}$	2	3	4
1	1	$\overline{2}$	3	$\overline{4}$	$\overline{5} = \overline{0}$
2	2	3	<u>4</u>	$\overline{5} = \overline{0}$	$\overline{6} = \overline{1}$
3	3	4	$\overline{5} = \overline{0}$	$\overline{6} = \overline{1}$	$\overline{7} = \overline{2}$
4	4	$\overline{5} = \overline{0}$	$\overline{6} = \overline{1}$	$\overline{7} = \overline{2}$	$\overline{8} = \overline{3}$

+	0	1	2	3	4
0	$\overline{0}$	1	2	3	4
1	1	2	3	<u>4</u>	Ō
2	2	3	$\overline{4}$	$\overline{0}$	1
3	3	<u>4</u>	$\overline{0}$	1	2
4	4	$\overline{0}$	1	2	3

S_3 Permutation group

Proposition

The set of bijections from $\{1, 2, ..., n\}$ into itself, equipped with the composition of functions, is a group, denoted (S_n, \circ) .

Definition

A bijection from $\{1, 2, ..., n\}$ (into itself) is called a permutation. The group (S_n, \circ) is called the permutation group (or the symmetric group)

Lemma

The number of permutations S_n is n!

Notation and examples

Describing a permutation $f : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ is equivalent to giving the images of each *i* going from 1 to *n*. We therefore denote *f* by

$$\begin{bmatrix} 1 & 2 & \dots & n \\ f(1) & f(2) & \dots & f(n) \end{bmatrix}$$

In this case we will study in detail the group S_3 of permutations of $\{1,2,3\}$. We know that S_3 has 3! = 6 elements that we list

- $id = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$ identity $\tau_1 = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}$ a transposition $\tau_2 = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$ a second transposition $\tau_3 = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix}$ a third transposition $\sigma = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ a cycle
- $\sigma^{-1} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ the reverse of the previous cycle

Then $S_3 = \{id, \tau_1, \tau_2, \tau_3, \sigma, \sigma^{-1}\}$

Let's calculate $\tau_1 \circ \sigma$ and $\sigma \circ \tau_1$

$$\tau_1 \circ \sigma = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} = \tau_2 \text{ and } \sigma \circ \tau_1 = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \\ 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix} = \tau_3$$

We have $\tau_1 \circ \sigma \neq \sigma \circ \tau_1$ then the group is not commutative. Generally, the group $S_n, n \ge 3$ is not commutative.

Table of the S_3 group

g • f	id	$ au_1$	$ au_2$	$ au_3$	σ	σ^{-1}
id	id	$ au_1$	$ au_2$	$ au_3$	σ	σ^{-1}
$ au_1$	$ au_1$	id	σ	σ^{-1}	$ au_2$	$ au_3$
$ au_2$	$ au_2$	σ^{-1}	id	σ	$ au_3$	$ au_1$
$ au_3$	$ au_3$	σ	σ^{-1}	id	$ au_1$	$ au_2$
σ	σ	$ au_3$	$ au_1$	$ au_2$	σ^{-1}	id
σ^{-1}	σ^{-1}	$ au_2$	$ au_3$	$ au_1$	id	σ

The Rings 3

Definition

Let + and × be two internal laws on a set A, we say that $(A, +, \times)$ is a ring if the following properties are satisfied:

- (*A*, +) is a commutative group whose identity element will be noted 0_A
- \blacktriangleright The law \times is associative
- \succ x is distributive with respect to +

Remarks

- \blacktriangleright The ring is commutative if \times is commutative
- > Unitary if \times has an identity element 1_A

Examples:

 $(\mathbb{Z}, +, \times), (\mathbb{R}, +, \times), (\mathbb{C}, +, \times)$ are commutative rings

Calculation rules in a ring

Let $(A, +, \times)$ be a ring and let $x, y \in A$ then

- $x \times 0_A = 0_A \times x = 0_A$
- For all $n \in \mathbb{Z}$; n(ab) = (na)b = a(nb)
- (-a)(-b) = ab
- If a and b commute, $(a+b)^n = \sum_{k=0}^{k=n} C_n^k a^k b^{n-k}$ and $a^n - b^n = (a-b) \sum_{k=0}^{k=n-1} a^k b^{n-1-k}$

Subring

If A is a ring and B is a subring of A, we say that B is a subring of A if B is stable for the + and \times laws and if B has the + and \times laws is a ring.

Proposition

A part *B* of the ring *A* is a subring of *A* if and only if: $> 1_A \in B$ $> \forall a, b \in B; a - b \in B$ $> \forall a, b \in B; a \times b \in B$

Invertible elements

In a ring A, not all elements $a \in A$ necessarily has an inverse for the \times law. When this is the case, we say that a is invertible and we denote its inverse a^{-1} . The set of invertible elements of the ring is denoted U(A). It is a group for the \times law.

Zero divisors

Definition

Let A be a ring.

- A non-zero element a of A is called a zero divisor if there exists another non-zero element b of A such that ab = 0.
- If A is a commutative ring not reduced to {0} and if A does not have a zero divisor, then we say that A is integral. Or integral domain.

Example:

In $\frac{\mathbb{Z}}{6\mathbb{Z}}$ we have $\overline{2} \times \overline{3} = \overline{0}$ but $\overline{2} \neq \overline{0}$ and $\overline{3} \neq \overline{0}$, $\overline{2}$ and $\overline{3}$ are zero divisors.

Ring homomorphism

Definition

Let A, B be two rings. An application $f: A \rightarrow B$ is a ring morphism if the following conditions are satisfied:

- \succ $f(1_A) = 1_B$
- For all $a, b \in A$; f(a + b) = f(a) + f(b)
- ▶ For all $a, b \in A$; $f(a \times b) = f(a) \times f(b)$

If f is bijective we say that $f: A \rightarrow B$ is a ring isomorphism.

Remarks For a ring morphism $f: A \to B$ we have $\succ f(0_A) = 0_B$ \succ For all $n \in \mathbb{Z}$ and $a \in A$; f(na) = nf(a)

Ideals

Definition

Let *A* be a commutative ring. A subset *I* of *A* is an ideal if (I, +) is a group and if, for all $a \in A$ and all $u \in I$, then $au \in I$.

Proposition

A part *I* of *A* is an ideal if and only if *I* is non-empty and satisfies:

- For all $x, y \in I$; $x y \in I$
- For all $x \in I$ and for all $a \in A$; $ax \in I$

Proposition

Let *I* and *J* be two ideals of *A*. Then $I \cap J$ and I + J are two ideals of *A*.

4 Field

Definition

A field is a commutative ring in which every non-zero element is invertible

Examples:

- $(\mathbb{R}, +, \times), (\mathbb{C}, +, \times)$ are fields
- $(\mathbb{Z}, +, \times)$ is not a field

• $(\frac{\mathbb{Z}}{p\mathbb{Z}} - \{\overline{0}\}, +, \times)$ is a field, where p is prime number, as a particular case we take p = 5 then

$$\frac{\mathbb{Z}}{5\mathbb{Z}} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$$

+	$\overline{0}$	1	$\overline{2}$	3	4
0	$\overline{0}$	1	2	3	4
1	1	$\overline{2}$	3	$\overline{4}$	Ō
$\overline{2}$	2	3	$\overline{4}$	$\overline{0}$	1
3	3	<u>4</u>	$\overline{0}$	1	2
4	<u>4</u>	$\overline{0}$	1	$\overline{2}$	3

×	1	$\overline{2}$	3	<u>4</u>
1	1	2	3	$\overline{4}$
2	2	$\overline{4}$	1	3
3	3	1	4	2
<u>4</u>	<u>4</u>	3	2	1