University of Batna 2

Faculty of Mathematics and Computer Science

Departement of Mathematics

Chapter 04: Algebraic structures

By : Brahimi Mahmoud

$a \times (b + c) = a \times b + a \times c$

Academic year 2024/2025

1 Internal composition law

Definition

Let E be a set, an internal composition law on E in a map of $E \times E$ on E, we denote the internal composition law by: \ast , Δ , T, ... And we write

$$
\ast: E \times E \longrightarrow E
$$

$$
(x, y) \longmapsto x * y
$$

Examples:

 $(+)$ and (\times) are internal composition laws on N.

 $(-)$ and (\div) are an internal composition laws on N.

Properties of an internal composition law

Definition

Let $*$ be an internal law on a set E. We say that

- The law $*$ is commutative if for all $x, y \in E$: $(x * y = y * x)$.
- The law $*$ is associative if for all $x, y, z \in E$: $((x * y) * z = x * (y * z)).$
- e of is an identity element for the law $*$ if for all $x \in E$: $(x * e = e * x = x)$
- x has an inverse element x' for the law $*$, if: $(x * x' = x' * x = e)$ hold
- \ast is distributive with respect to Δ if for all elements $x, y, z \in E$;
	- $x * (y \Delta z) = (x * y) \Delta (x * z)$ and $(x \Delta y) * z = (x * z) \Delta (y * z)$

Example:

Let * be an internal law on $E = \mathbb{R} - \{-1\}$ defined by: $\forall x, y \in E$; $x * y = x + y + xy$.

∗ is commutative, associative, has an identity element and each element has an inverse element.

Proposition

Let $*$ be an internal law on a set E, if $*$ has an identity element, it is unique

2 Groups

Definition

Let $*$ be an internal law on a set G, we say that $(G,*)$ is a group if the following properties are satisfied:

- ∗ is associative
- ∗ has an identity element
- \triangleright Each element in G has an inverse

Remark

If $*$ is commutative we say that $(G,*)$ is a commutative group or abelian group.

Example:

Let * be an internal law on $G = \mathbb{R}$ defined by: $\forall x, y \in G$; $x * y = x + y - 1$

Show that $(G,*)$ is a commutative group.

Subgroup

Let $(G,*)$ be a group

Definition

A subpart $H \subset G$ is a subgroup of G if: $>e ∈ H$ For all $x, y \in H$, we have $x \star y \in H$,

For all $x \in H$, we have $x' \in H$.

Remark

To show that H is a subgroup it suffices to show that:

- \triangleright $H \neq \emptyset$ that's to say $e \in H$
- $\triangleright \forall x, y \in H \Longrightarrow x * y' \in H$

Example:

 $H = \{ z \in \mathbb{C}^*; |z| = 1 \}, (H, \times)$ is a subgroup of (\mathbb{C}^*, \times)

Group homomorphism

Definition

Let (G, \star) and (G', Δ) be two groups. A map $f : G \to G'$ is a group morphism if: For all $x, x' \in G$; $f(x \star x') = f(x) \Delta f(x')$

Example:

 $f: (\mathbb{R}, +) \longrightarrow (\mathbb{R}^*, \times), f(x) = e^x$ is a group morphism.

Properties

Proposition

Let $f : G \longrightarrow G'$ a group morphism, then:

$$
\triangleright \ \ f(e_G)=e_G,
$$

For all $x \in G$, $f(x') = (f(x))'$

Example:

 $f: (\mathbb{R}_+^*, \times) \to (\mathbb{R}, +), f(x) = \ln x$

Proposition

Example 1 Let there be two group morphisms $f : G \longrightarrow G'$ and $g : G' \longrightarrow G''$. Then $g \circ f : G \to G''$ is a group morphism. Figure 1 If $f : G \to G'$ is a bijective morphism then $f^{-1} : G' \to G$ is also a group morphism.

Group isomorphism

Definition

A bijective morphism is an isomorphism. Two groups G, G' are isomorphic if there exists a bijective morphism $f : G \longrightarrow G'$.

Example:

 $f: (\mathbb{R}_+^*, \times) \to (\mathbb{R}, +), f(x) = \ln x$ is group isomorphism.

Finite $\frac{\mathbb{Z}}{n\mathbb{Z}}$ groups

The set and the $\frac{\mathbb{Z}}{n\mathbb{Z}}$ group

Let $n \ge 1$. Remember that $\frac{\mathbb{Z}}{n\mathbb{Z}}$ is the set $\frac{\mathbb{Z}}{n\mathbb{Z}} = \{0, 1, 2, ..., n-1\}$ where \bar{p} denotes the equivalence class of p modulo n, in other words $\bar{p} = \bar{q} \Leftrightarrow p \equiv q \pmod{n}$.

Or $\bar{p} = \bar{q} \Leftrightarrow \exists k \in \mathbb{Z}, p = q + kn$.

Examples:

ℤ $\frac{\mathbb{Z}}{3\mathbb{Z}}=\{\overline{0},\overline{1},\overline{2}\},\frac{\mathbb{Z}}{6\mathbb{Z}}$ $\frac{\mathbb{Z}}{6\mathbb{Z}}=\left\{ \overline{0},\overline{1},\overline{2},\overline{3},\overline{4},\overline{5}\right\}$

An addition on $\frac{\mathbb{Z}}{n\mathbb{Z}}$ is defined by: $\overline{p+q} = \overline{p} + \overline{q}$

The product on $\frac{Z}{\sigma^2}$ $\frac{\pi}{n\mathbb{Z}}$ is defined by: $\overline{p \times q} = \overline{p} \times \overline{q}$

Example:

On $\frac{\mathbb{Z}}{12\mathbb{Z}}$ we have $\overline{10} + \overline{5} = \overline{10 + 5} = \overline{15} = \overline{3}, \overline{7} + \overline{5} = \overline{7 + 5} = \overline{12} = \overline{0}$. $\overline{10} \times 5 = \overline{10} \times 5 = \overline{50} = 2, \overline{7} \times \overline{5} = \overline{7 \times 5} = \overline{35} = \overline{11}$

Theorem $\left(\frac{\mathbb{Z}}{2}\right)$ $\frac{u}{n\mathbb{Z}}$, +) is a commutative group.

Example: $\frac{\mathbb{Z}}{5\mathbb{Z}} = \{ \bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4} \}$

			າ	2	
		7	્ર		, $=$ \prime
$\overline{2}$	$\overline{2}$	$\overline{\mathbf{2}}$		$\overline{\mathbf{5}} = \overline{\mathbf{0}}$	$\overline{6} = \overline{1}$
হ	$\overline{2}$		$= 0$	$\overline{6} = \overline{1}$	$\overline{7}=\overline{2}$
		$\overline{}$	$\overline{6}=\overline{1}$	$\overline{7}=\overline{2}$	$\overline{8} = \overline{3}$

S_3 Permutation group

Proposition

The set of bijections from $\{1, 2, \ldots, n\}$ into itself, equipped with the composition of functions, is a group, denoted (S_n, \circ) .

Definition

A bijection from $\{1, 2, ..., n\}$ (into itself) is called a permutation. The group (S_n, \circ) is called the permutation group (or the symmetric group)

Lemma

The number of permutations S_n is n!

Notation and examples

Describing a permutation $f : \{1,2,\ldots,n\} \rightarrow \{1,2,\ldots,n\}$ is equivalent to giving the images of each i going from 1 to n . We therefore denote f by

$$
\begin{bmatrix} 1 & 2 & \dots & n \\ f(1) & f(2) & \dots & f(n) \end{bmatrix}
$$

In this case we will study in detail the group S_3 of permutations of {1,2,3}. We know that S_3 has $3! = 6$ elements that we list

- $id = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$ identity • $\tau_1 = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 2 \end{bmatrix}$
- $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}$ a transposition
- $\tau_2 = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$ a second transposition
- $\tau_3 = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix}$ a third transposition
- $\bullet \quad \sigma = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ a cycle $\bullet \quad \sigma^{-1} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ the reverse of the previous cycle

Then $S_3 = \{ id, \tau_1, \tau_2, \tau_3, \sigma, \sigma^{-1} \}$

Let's calculate $\tau_1 \circ \sigma$ and $\sigma \circ \tau_1$

$$
\tau_1 \circ \sigma = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} = \tau_2 \text{ and } \sigma \circ \tau_1 = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \\ 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix} = \tau_3
$$

We have $\tau_1 \circ \sigma \neq \sigma \circ \tau_1$ then the group is not commutative. Generally, the group S_n , $n \geq 3$ is not commutative.

Table of the S_3 group

3 The Rings

Definition

Let + and \times be two internal laws on a set A, we say that $(A, +, \times)$ is a ring if the following properties are satisfied:

- $(A, +)$ is a commutative group whose identity element will be noted 0_A
- \triangleright The law \times is associative
- $\triangleright \times$ is distributive with respect to +

Remarks

- \triangleright The ring is commutative if \times is commutative
- \triangleright Unitary if \times has an identity element 1_4

Examples:

 $(\mathbb{Z}, +, \times)$, $(\mathbb{R}, +, \times)$, $(\mathbb{C}, +, \times)$ are commutative rings

Calculation rules in a ring

Let $(A, +, \times)$ be a ring and let $x, y \in A$ then

- $x \times 0_A = 0_A \times x = 0_A$
- For all $n \in \mathbb{Z}$; $n(ab) = (na)b = a(nb)$
- $(-a)(-b) = ab$
- \bullet If a and b commute, $(a + b)^n = \sum_{k=0}^{k=n} C_n^k a^k b^{n-k}$ and $a^n - b^n = (a - b) \sum_{k=0}^{k=n-1} a^k b^{n-k}$

Subring

If A is a ring and B is a subring of A, we say that B is a subring of A if B is stable for the $+$ and \times laws and if B has the $+$ and \times laws is a ring.

Proposition

A part B of the ring A is a subring of A if and only if: $\geq 1_A \in B$ $\triangleright \forall a, b \in B; a - b \in B$ $\triangleright \forall a, b \in B; a \times b \in B$

Invertible elements

In a ring A, not all elements $a \in A$ necessarily has an inverse for the \times law. When this is the case, we say that *a* is invertible and we denote its inverse a^{-1} . The set of invertible elements of the ring is denoted $U(A)$. It is a group for the \times law.

Zero divisors

Definition

Let A be a ring.

- \triangleright A non-zero element a of A is called a zero divisor if there exists another non-zero element *b* of *A* such that $ab = 0$.
- If A is a commutative ring not reduced to $\{0\}$ and if A does not have a zero divisor, then we say that A is integral. Or integral domain.

Example:

In $\frac{\mathbb{Z}}{6\mathbb{Z}}$ we have $\bar{2} \times \bar{3} = \bar{0}$ but $\bar{2} \neq \bar{0}$ and $\bar{3} \neq \bar{0}$, $\bar{2}$ and $\bar{3}$ are zero divisors.

Ring homomorphism

Definition

Let A, B be two rings. An application $f: A \rightarrow B$ is a ring morphism if the following conditions are satisfied:

- \triangleright $f(1_A) = 1_B$
- For all $a, b \in A$; $f(a + b) = f(a) + f(b)$
- For all $a, b \in A$; $f(a \times b) = f(a) \times f(b)$

If f is bijective we say that $f: A \rightarrow B$ is a ring isomorphism.

Remarks For a ring morphism $f: A \rightarrow B$ we have \triangleright $f(0_A) = 0_B$ For all $n \in \mathbb{Z}$ and $a \in A$; $f(na) = nf(a)$

Ideals

Definition

Let A be a commutative ring. A subset I of A is an ideal if $(I, +)$ is a group and if, for all $a \in A$ and all $u \in I$, then $au \in I$.

Proposition

A part I of A is an ideal if and only if I is non-empty and satisfies:

- For all $x, y \in I$; $x y \in I$
- For all $x \in I$ and for all $a \in A$: $ax \in I$

Proposition

Let *I* and *J* be two ideals of *A*. Then $I \cap J$ and $I + J$ are two ideals of *A*.

4 Field

Definition

A field is a commutative ring in which every non-zero element is invertible

Examples:

- $(\mathbb{R}, +, \times), (\mathbb{C}, +, \times)$ are fields
- \bullet $(\mathbb{Z}, +, \times)$ is not a field

 \bullet $\left(\frac{\mathbb{Z}}{\mathbb{Z}}\right)$ $\frac{\mathbb{Z}}{p\mathbb{Z}}$ – {0}, +,×) is a field, where p is prime number, as a particular case we take $p = 5$ then

$$
\frac{\mathbb{Z}}{5\mathbb{Z}} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}
$$

