
University of Batna 2 

Faculty of Mathematics and Computer Science 

Departement of Mathematics 

Chapter 04: Algebraic structures 
 

By : Brahimi Mahmoud 

 

 

 

 

 

 

𝑎 × (𝑏 + 𝑐) = 𝑎 × 𝑏 + 𝑎 × 𝑐 

                    

 

 

 

 

 

 

                                      Academic year 2024/2025    



1 Internal composition law 
Definition 

Let 𝐸 be a set, an internal composition law on 𝐸 in a map of 𝐸 × 𝐸 on 𝐸, we denote the 

internal composition law by: ∗, Δ, Τ, …And we write 

∗: 𝐸 × 𝐸 ⟶ 𝐸 
(𝑥, 𝑦) ⟼ 𝑥 ∗ 𝑦 

 

 

Examples: 

(+) and (×) are internal composition laws on ℕ. 

(−) and (÷) are an internal composition laws on ℕ. 

Properties of an internal composition law 

Definition 

Let ∗ be an internal law on a set 𝐸. We say that 

 The law ∗ is commutative if for all 𝑥, 𝑦 ∈ 𝐸: (𝑥 ∗  𝑦 =  𝑦 ∗  𝑥). 
 The law ∗ is associative if for all 𝑥, 𝑦, 𝑧 ∈ 𝐸: 

((𝑥 ∗  𝑦)  ∗  𝑧 =  𝑥 ∗  (𝑦 ∗  𝑧)).  
 𝑒 of is an identity element for the law ∗ if for all 𝑥 ∈ 𝐸: 

 (𝑥 ∗  𝑒 =  𝑒 ∗  𝑥 =  𝑥) 

 𝑥 has an inverse element 𝑥′ for the law ∗, if: (𝑥 ∗  𝑥′ =  𝑥′ ∗  𝑥 =  𝑒) hold 

 ∗ is distributive with respect to ∆ if for all elements 𝑥, 𝑦, 𝑧 ∈  𝐸;  

𝑥 ∗  (𝑦 ∆ 𝑧)  =  (𝑥 ∗  𝑦) ∆ (𝑥 ∗  𝑧) and (𝑥 ∆ 𝑦)  ∗  𝑧 =  (𝑥 ∗  𝑧) ∆ (𝑦 ∗  𝑧) 

 

Example: 

Let ∗ be an internal law on 𝐸 = ℝ − {−1} defined by: ∀𝑥, 𝑦 ∈ 𝐸; 𝑥 ∗ 𝑦 = 𝑥 + 𝑦 + 𝑥𝑦. 

∗ is commutative, associative, has an identity element and each element has an inverse 

element. 

Proposition 

Let ∗ be an internal law on a set 𝐸, if ∗ has an identity element, it is unique 

 

 

2 Groups 
Definition 

Let ∗ be an internal law on a set 𝐺, we say that (𝐺,∗) is a group if the following properties 

are satisfied: 

 ∗ is associative 

 ∗ has an identity element 

 Each element in 𝐺 has an inverse 

 



Remark 

If ∗ is commutative we say that (𝐺,∗) is a commutative group or abelian group. 

 

Example: 

Let ∗ be an internal law on 𝐺 = ℝ defined by: ∀𝑥, 𝑦 ∈ 𝐺; 𝑥 ∗ 𝑦 = 𝑥 + 𝑦 − 1 

Show that (𝐺,∗) is a commutative group. 

Subgroup 
Let (𝐺,∗) be a group 

Definition 

A subpart 𝐻 ⊂  𝐺 is a subgroup of 𝐺 if:  

 𝑒 ∈  𝐻,  
  For all 𝑥, 𝑦 ∈  𝐻, we have 𝑥 ⋆  𝑦 ∈  𝐻,  

 For all 𝑥 ∈  𝐻, we have 𝑥′ ∈  𝐻. 
 

 

Remark 

To show that 𝐻 is a subgroup it suffices to show that: 

 𝐻 ≠ ∅ that’s to say 𝑒 ∈  𝐻 
 ∀𝑥, 𝑦 ∈ 𝐻 ⟹ 𝑥 ∗ 𝑦′ ∈ 𝐻 

 

 

Example: 

𝐻 = {𝑧 ∈ ℂ∗;  |𝑧| = 1} , (𝐻, ×) is a subgroup of (ℂ∗,×) 

Group homomorphism 
Definition 

Let (𝐺,⋆) and (𝐺′, ∆) be two groups. A map 𝑓 ∶  𝐺 ⟶  𝐺′ is a group morphism if:  

For all 𝑥, 𝑥′ ∈  𝐺;  𝑓 (𝑥 ⋆  𝑥′)  =  𝑓 (𝑥) ∆ 𝑓 (𝑥′) 
 

 

Example: 

𝑓: (ℝ, +) ⟶ (ℝ∗,×), 𝑓(𝑥) = 𝑒𝑥 is a group morphism. 

Properties 

Proposition 

Let 𝑓 ∶  𝐺 ⟶  𝐺′ a group morphism, then: 

 𝑓(𝑒𝐺) = 𝑒𝐺′ 

 For all 𝑥 ∈ 𝐺, 𝑓(𝑥′) = (𝑓(𝑥))
′
 

 

 



Example: 

𝑓: (ℝ+
∗ ,×) ⟶ (ℝ, +), 𝑓(𝑥) = ln 𝑥 

Proposition 

 Let there be two group morphisms 𝑓 ∶  𝐺 ⟶  𝐺′ and 𝑔 ∶  𝐺′ ⟶  𝐺′′.  
Then 𝑔 ∘  𝑓 ∶  𝐺 ⟶  𝐺′′ is a group morphism. 

 If 𝑓 ∶  𝐺 ⟶  𝐺′ is a bijective morphism then 𝑓−1  ∶  𝐺′ ⟶  𝐺 is also a group 

morphism. 
 

 

Group isomorphism 

Definition 

A bijective morphism is an isomorphism. Two groups 𝐺, 𝐺′ are isomorphic if there exists a 

bijective morphism 𝑓 ∶  𝐺 ⟶  𝐺′. 
 

 

Example: 

𝑓: (ℝ+
∗ ,×) ⟶ (ℝ, +), 𝑓(𝑥) = ln 𝑥 is group isomorphism. 

Finite 
ℤ

𝑛ℤ
 groups  

The set and the 
ℤ

𝑛ℤ
 group 

Let 𝑛 ⩾  1. Remember that 
ℤ

𝑛ℤ
 is the set 

ℤ

𝑛ℤ
= {0̅, 1̅, 2̅, … , 𝑛 − 1̅̅ ̅̅ ̅̅ ̅} where �̅� denotes the 

equivalence class of 𝑝 modulo 𝑛, in other words �̅� = �̅� ⟺ 𝑝 ≡ 𝑞(mod𝑛). 

Or �̅� = �̅� ⟺ ∃𝑘 ∈ ℤ, 𝑝 = 𝑞 + 𝑘𝑛. 

Examples: 

ℤ

3ℤ
= {0̅, 1̅, 2̅}, 

ℤ

6ℤ
= {0̅, 1̅, 2̅, 3̅, 4̅, 5̅} 

An addition on 
ℤ

𝑛ℤ
 is defined by: 𝑝 + 𝑞̅̅ ̅̅ ̅̅ ̅ = �̅� + �̅� 

The product on 
ℤ

𝑛ℤ
 is defined by: 𝑝 × 𝑞̅̅ ̅̅ ̅̅ ̅ = �̅� × �̅� 

Example: 

On 
ℤ

12ℤ
 we have 10̅̅̅̅ + 5̅ = 10 + 5̅̅ ̅̅ ̅̅ ̅̅ ̅ = 15̅̅̅̅ = 3̅, 7̅ + 5̅ = 7 + 5̅̅ ̅̅ ̅̅ ̅ = 12̅̅̅̅ = 0̅. 

10̅̅̅̅ × 5̅̅ ̅̅̅ = 10 × 5̅̅ ̅̅ ̅̅ ̅̅ ̅ = 50̅̅̅̅ = 2̅, 7̅ × 5̅ = 7 × 5̅̅ ̅̅ ̅̅ ̅ = 35̅̅̅̅ = 11̅̅̅̅ . 

Theorem 

(
ℤ

𝑛ℤ
, +) is a commutative group. 

 



 

Example: 
ℤ

5ℤ
= {0̅, 1̅, 2̅, 3̅, 4̅} 

+ �̅� �̅� �̅� �̅� �̅� 

�̅� �̅� �̅� �̅� �̅� �̅� 

�̅� �̅� �̅� �̅� �̅� �̅� = �̅� 

�̅� �̅� �̅� �̅� �̅� = �̅� �̅� = �̅� 

�̅� �̅� �̅� �̅� = �̅� �̅� = �̅� �̅� = �̅� 

�̅� �̅� �̅� = �̅� �̅� = �̅� �̅� = �̅� �̅� = �̅� 

 

+ �̅� �̅� �̅� �̅� �̅� 

�̅� �̅� �̅� �̅� �̅� �̅� 

�̅� �̅� �̅� �̅� �̅� �̅� 

�̅� �̅� �̅� �̅� �̅� �̅� 

�̅� �̅� �̅� �̅� �̅� �̅� 

�̅� �̅� �̅� �̅� �̅� �̅� 

 

𝑆3 Permutation group 

Proposition 

The set of bijections from {1, 2, . . . , 𝑛} into itself, equipped with the composition of 

functions, is a group, denoted (𝑆𝑛, ∘). 

 

 

Definition 

A bijection from {1,2, . . . , 𝑛} (into itself) is called a permutation. The group (𝑆𝑛, ∘) is 

called the permutation group (or the symmetric group) 
 

 

Lemma 

The number of permutations 𝑆𝑛 is 𝑛! 
 

 

Notation and examples 

Describing a permutation 𝑓 ∶  {1,2, . . . , 𝑛}  ⟶ {1,2, . . . , 𝑛} is equivalent to giving the images 

of each 𝑖 going from 1 to 𝑛. We therefore denote 𝑓 by 

[
1 2      … 𝑛

𝑓(1) 𝑓(2) … 𝑓(𝑛)    ] 

In this case we will study in detail the group 𝑆3 of permutations of {1,2,3}. We know that 𝑆3 

has 3!  =  6 elements that we list 

 



 𝑖𝑑 = [
1 2 3
1 2 3

] identity 

 𝜏1 = [
1 2 3
1 3 2

] a transposition 

 𝜏2 = [
1 2 3
3 2 1

] a second transposition 

 𝜏3 = [
1 2 3
2 1 3

] a third transposition 

 𝜎 = [
1 2 3
2 3 1

] a cycle 

 𝜎−1 = [
1 2 3
3 1 2

] the reverse of the previous cycle 

Then 𝑆3 = {𝑖𝑑, 𝜏1, 𝜏2, 𝜏3, 𝜎, 𝜎−1}  

Let's calculate 𝜏1 ∘ 𝜎 and 𝜎 ∘ 𝜏1 

𝜏1 ∘ 𝜎 = [
1 2 3
2 3 1
3 2 1

] = [
1 2 3
3 2 1

] = 𝜏2 and 𝜎 ∘ 𝜏1 = [
1 2 3
1 3 2
2 1 3

] = [
1 2 3
2 1 3

] = 𝜏3 

We have 𝜏1 ∘ 𝜎 ≠ 𝜎 ∘ 𝜏1 then the group is not commutative. Generally, the group 𝑆𝑛, 𝑛 ≥ 3 is 

not commutative. 

Table of the 𝑆3 group 

𝒈 ∘ 𝒇 𝒊𝒅 𝝉𝟏 𝝉𝟐 𝝉𝟑 𝝈 𝝈−𝟏 

𝒊𝒅 𝒊𝒅 𝝉𝟏 𝝉𝟐 𝝉𝟑 𝝈 𝝈−𝟏 

𝝉𝟏 𝝉𝟏 𝒊𝒅 𝝈 𝝈−𝟏 𝝉𝟐 𝝉𝟑 

𝝉𝟐 𝝉𝟐 𝝈−𝟏 𝒊𝒅 𝝈 𝝉𝟑 𝝉𝟏 

𝝉𝟑 𝝉𝟑 𝝈 𝝈−𝟏 𝒊𝒅 𝝉𝟏 𝝉𝟐 

𝝈 𝝈 𝝉𝟑 𝝉𝟏 𝝉𝟐 𝝈−𝟏 𝒊𝒅 

𝝈−𝟏 𝝈−𝟏 𝝉𝟐 𝝉𝟑 𝝉𝟏 𝒊𝒅 𝝈 

 

3 The Rings 
Definition 

Let + and × be two internal laws on a set 𝐴, we say that (𝐴, +,×) is a ring if the following 

properties are satisfied: 

 (𝐴, +) is a commutative group whose identity element will be noted 0𝐴 
 The law × is associative 
 × is distributive with respect to + 

 
 

Remarks 

 The ring is commutative if × is commutative  

 Unitary if × has an identity element 1𝐴 

 

 

 



Examples: 

(ℤ, +,×), (ℝ, +,×), (ℂ, +,×) are commutative rings 

Calculation rules in a ring 

Let (𝐴, +,×) be a ring and let 𝑥, 𝑦 ∈ 𝐴 then 

 𝑥 × 0𝐴 = 0𝐴 × 𝑥 = 0𝐴 

 For all 𝑛 ∈ ℤ; 𝑛(𝑎𝑏) = (𝑛𝑎)𝑏 = 𝑎(𝑛𝑏) 

 (−𝑎)(−𝑏) = 𝑎𝑏 

 If 𝑎 and 𝑏 commute,  

(𝑎 + 𝑏)𝑛 = ∑ 𝐶𝑛
𝑘𝑎𝑘𝑏𝑛−𝑘𝑘=𝑛

𝑘=0  and 𝑎𝑛 − 𝑏𝑛 = (𝑎 − 𝑏) ∑ 𝑎𝑘𝑏𝑛−1−𝑘𝑘=𝑛−1
𝑘=0  

Subring 

If 𝐴 is a ring and 𝐵 is a subring of 𝐴, we say that 𝐵 is a subring of 𝐴 if 𝐵 is stable for the + 

and × laws and if 𝐵 has the + and × laws is a ring. 

Proposition 

A part 𝐵 of the ring 𝐴 is a subring of 𝐴 if and only if: 

 1𝐴 ∈ 𝐵 

 ∀𝑎, 𝑏 ∈ 𝐵; 𝑎 − 𝑏 ∈ 𝐵 

 ∀𝑎, 𝑏 ∈ 𝐵; 𝑎 × 𝑏 ∈ 𝐵 
 

 

Invertible elements 

In a ring 𝐴, not all elements 𝑎 ∈ 𝐴 necessarily has an inverse for the × law. When this is the 

case, we say that 𝑎 is invertible and we denote its inverse 𝑎−1. The set of invertible elements 

of the ring is denoted 𝑈(𝐴). It is a group for the × law. 

Zero divisors 

Definition 

Let A be a ring.  

 A non-zero element 𝑎 of 𝐴 is called a zero divisor if there exists another non-zero 

element 𝑏 of 𝐴 such that 𝑎𝑏 = 0.  
 If 𝐴 is a commutative ring not reduced to {0} and if 𝐴 does not have a zero divisor, 

then we say that 𝐴 is integral. Or integral domain. 

 

 

Example:  

In 
ℤ

6ℤ
 we have 2̅ × 3̅ = 0̅ but 2̅ ≠ 0̅ and 3̅ ≠ 0̅, 2̅ and 3̅ are zero divisors. 

 

 

 



Ring homomorphism 

Definition 

Let 𝐴, 𝐵 be two rings. An application 𝑓: 𝐴 → 𝐵 is a ring morphism if the following 

conditions are satisfied: 

 𝑓(1𝐴) = 1𝐵 

 For all 𝑎, 𝑏 ∈ 𝐴; 𝑓(𝑎 + 𝑏) = 𝑓(𝑎) + 𝑓(𝑏) 

 For all 𝑎, 𝑏 ∈ 𝐴; 𝑓(𝑎 × 𝑏) = 𝑓(𝑎) × 𝑓(𝑏) 

 

 

If 𝑓 is bijective we say that 𝑓: 𝐴 → 𝐵 is a ring isomorphism. 

Remarks 

For a ring morphism 𝑓: 𝐴 → 𝐵 we have 

 𝑓(0𝐴) = 0𝐵 

 For all 𝑛 ∈ ℤ and 𝑎 ∈ 𝐴; 𝑓(𝑛𝑎) = 𝑛𝑓(𝑎) 

 

 

Ideals 

Definition 

Let 𝐴 be a commutative ring. A subset 𝐼 of 𝐴 is an ideal if (𝐼, +) is a group and if, for all 

𝑎 ∈ 𝐴 and all 𝑢 ∈ 𝐼, then 𝑎𝑢 ∈ 𝐼. 

 

 

Proposition 

A part 𝐼 of 𝐴 is an ideal if and only if 𝐼 is non-empty and satisfies: 

 For all 𝑥, 𝑦 ∈ 𝐼; 𝑥 − 𝑦 ∈ 𝐼 

 For all 𝑥 ∈ 𝐼 and for all 𝑎 ∈ 𝐴; 𝑎𝑥 ∈ 𝐼 

 

 

Proposition 

Let 𝐼 and 𝐽 be two ideals of 𝐴. Then 𝐼 ∩ 𝐽 and 𝐼 + 𝐽 are two ideals of 𝐴. 
 

 

4 Field 
Definition 

A field is a commutative ring in which every non-zero element is invertible 
 

 

Examples: 

 (ℝ, +,×), (ℂ, +,×) are fields 

 (ℤ, +,×) is not a field 



 (
ℤ

𝑝ℤ
− {0̅}, +,×) is a field, where 𝑝 is prime number, as a particular case we take 𝑝 = 5 

then 

 
ℤ

5ℤ
= {0̅, 1̅, 2̅, 3̅, 4̅} 

+ �̅� �̅� �̅� �̅� �̅� 

�̅� �̅� �̅� �̅� �̅� �̅� 

�̅� �̅� �̅� �̅� �̅� �̅� 

�̅� �̅� �̅� �̅� �̅� �̅� 

�̅� �̅� �̅� �̅� �̅� �̅� 

�̅� �̅� �̅� �̅� �̅� �̅� 

 

× �̅� �̅� �̅� �̅� 

�̅� �̅� �̅� �̅� �̅� 

�̅� �̅� �̅� �̅� �̅� 

�̅� �̅� �̅� �̅� �̅� 

�̅� �̅� �̅� �̅� �̅� 

 


