

Exercices

• Exo1:

Le stator d'un alternateur triphasé comprend trois enroulements couplés en triangle, chacun de résistance $R_s = 2.5~\Omega$. La tension entre bornes de l'alternateur est maintenue constante et égale à 220 V par réglage de l'intensité du courant d'excitation.

Lorsque l'alternateur débite un courant d'intensité I = 8 A, dans une charge résistive, l'angle de décalage interne δ de l'alternateur est égal à 12 degrés.

- 1) Calculer la f.é.m. synchrone E_s d'une phase de l'induit.
- 2) Déterminer la réactance synchrone X_s d'une phase de l'induit.

• Exo2

A la fréquence de rotation nominale, la caractéristique à vide $E_v(I_r)$ d'un alternateur triphasé, tétrapolaire, à pôles lisses peut être assimilée, dans sa zone utile, à une droite passant par l'origine et par le point de coordonnées : $I_r = 2$ A ; $E_v = 90$ V (I_r : intensité du courant d'excitation ; E_v : f.é.m. induite à vide dans un enroulement du stator).

La fréquence nominale des f.é.m. de cet alternateur est égale à 50 Hz.

Le stator est couplé en étoile ; la tension entre deux bornes du stator est maintenue constante et égale à $U=380\ V$ par action sur l'intensité I_r du courant d'excitation.

Le bobinage statorique comporte N=1200 conducteurs actifs ; la résistance d'un enroulement du stator est négligeable devant la réactance synchrone $X_s=5~\Omega$.

La fréquence de rotation de la roue polaire est constante : n' = 1500 tr/mn. Le coefficient de Kapp est égal à K = 2.3.

- 1) Etude de la machine à vide
 - 1.1) Déterminer la f.é.m. à vide E_v dans un enroulement de l'induit ?
 - 1.2) Calculer l'amplitude ϕ_v du flux embrassé.
 - 1.3) Quelle est l'intensité I_{rv} du courant d'excitation ?
 - 1.4) En prenant comme référence le vecteur \vec{V} , associé à la tension aux bornes d'un enroulement du stator, donner la direction du vecteur $\vec{\phi}_v$ représentant le flux magnétique dû à la roue polaire à vide et embrassé par cet enroulement.
- 2) Etude de la machine en charge

La machine débite un courant d'intensité I = 12 A dans une charge résistive.

- 2.1) Calculer le f.é.m. en charge E_{ch} dans un enroulement.
- 2.2) Calculer l'amplitude du flux (résultant) en charge.
- 2.3) Déterminer la f.é.m. synchrone E_s.
- 2.4) Quelle est l'intensité du courant d'excitation I_r ?

- 2.5) Calculer l'amplitude du flux ϕ_r produit par la roue polaire.
- 2.6) Donner la valeur de l'angle de décalage interne.
- 2.7) En prenant la tension \vec{V} comme origine des phases préciser les directions des vecteurs $\vec{\phi}_r$ représentant le flux dû à la roue polaire ; $\vec{\phi}_I$ représentant le flux dû aux courants induits et $\vec{\phi}$ correspondant au flux résultant.

Exo3

Soit un alternateur triphasé quadripolaire dont les enroulements statoriques sont couplés en étoile, on a effectué, à la fréquence de rotation nominale n' = 1500 tr/mn, les essais suivants :

A vide : $(E_v$: tension efficace par phase, I_r : intensité du courant d'excitation) :

$E_{v}(V)$	0	50	100	150	175	190	198
$I_{r}(A)$	0	4	8	12	14	16	20

- En court-circuit : pour une intensité du courant d'excitation $I_r = 10 \text{ A}$, on a mesuré, en ligne, un courant d'intensité I = 85 A.
- La résistance de l'inducteur est égale à $R_r = 2.4 \Omega$.
- Pour l'induit on a mesuré la résistance R entre deux bornes du stator : $R = 0.1\Omega$.

Cet alternateur autonome alimente une installation triphasée équilibrée, à caractère inductif, sous une tension efficace entre phases U=220~V. L'alternateur fournit une puissance active P=18~kW et une puissance réactive Q=12~kvar

- 1) Calculer l'intensité I du courant de ligne.
- 2) Quelle est la valeur du facteur de puissance de l'installation?
- 3) Déterminer l'impédance synchrone Z_s de l'alternateur.
- 4) Calculer la réactance synchrone X_s de l'alternateur.
- 5) Déterminer la f.é.m. synchrone E_s correspondant au fonctionnement de l'installation dans les conditions indiquées.
- 6) En déduire l'intensité I_r du courant d'excitation et la f.é.m. à vide E_v correspondant à ce courant d'excitation.
- 7) Pour ce régime de fonctionnement, quel est le rendement de l'alternateur si les pertes dites constantes sont égales à p_c = 630 W?

Exo4

Un moteur synchrone : P = 1.49 MW – triphasé – triangle – 2300 V – 60 Hz – 20 pôles – $R_s \approx 0 \Omega$ – X_s = 4 Ω .

Il délivre une puissance mécanique constante et égale à sa puissance nominale.

- a) On ajuste le courant I_r de telle sorte que le courant consommé par le moteur soit minimal. Calculer :
- 1) La valeur de ce courant minimale par phase.
- 2) La valeur de la f.c.é.m. par phase.
- b) On modifie I_r de telle sorte que le courant consommé soit déphasé de 30° en avance sur la tension. Calculer :
 - 1) La nouvelle valeur de E par phase.
 - 2) La nouvelle valeur de I par phase.
 - 3) Q (puissance réactive) que le moteur fournit au réseau.

Exo5

La méthode de Behn-Eschenburg

On a relevé la caractéristique à vide d'un alternateur à pôles lisses, 50 Hz, stator en étoile. On a noté aussi, pour les mêmes valeurs du courant d'excitation, les valeurs du courant de court-circuit.

$I_r(A)$	2	5	8	10	15	18
$E_{v}(V)$	140	278	360	400	460	484
$I_{cc}(A)$	12	30	48	60	87	100

- 1) Calculer Z_s pour les valeurs données et tracer la courbe $Z_s = f(I_r)$.
- 2) Dans un fonctionnement en charge, on désire obtenir (récepteur inductif) :

$$V = 300 \text{ V}$$
 $I = 40 \text{ A}$ $\cos \varphi = 0.866$

Quel devra être le courant d'excitation?

3) Dans un fonctionnement, on sait que

$$I_r = 15 \text{ A}, \qquad I = 50 \text{ A}, \qquad \cos \varphi = 0.866;$$

Calculer V (récepteur inductif).

- 4) On impose V = 380 V (tension simple), $\varphi = -30^{\circ}$ (la charge contient des capacités), $I_r = 8$ A. Calculer I.
- 5) On impose $V=380\ V,\ I_r=18\ A,\ I=41\ A$; calculer le facteur de puissance.
- 6) La charge est une résistance de 7 Ω (montées en étoile) ; I_r = 15 A. Calculer I et V.