Algèbre 02

2 mars 2024

1 Vector Spaces

When you read the word vector you may immediately think of two points in \mathbb{R}^{2} (or \mathbb{R}^{3}) connected by an arrow. Mathematically speaking, a vector is just an element of a vector space. This then begs the question : What is a vector space? Roughly speaking, a vector space is a set of objects that can be added and multiplied by scalars.

Definition 1.0.1 A vector space is a set E of objects, called vectors, on which two operations called addition and scalar multiplication have been defined satisfying the following properties. If u, v, w are in E and if $\alpha, \beta \in \mathbb{R}$ are scalars :

1. The sum $u+v$ is in E. (closure under addition)
2. $u+v=v+u$ (addition is commutative)
3. $(u+v)+w=u+(v+w)$ (addition is associative)
4. There is a vector in E called the zero vector, denoted by 0 , satisfying $v+0=v$.
5. For each v there is a vector $-v$ in E such that $v+(-v)=0$.
6. The scalar multiple of v by α, denoted $\alpha \cdot v$, is in E. (closure under scalar multiplication)
7. $\alpha \cdot(u+v)=\alpha \cdot u+\alpha \cdot v$.
8. $(\alpha+\beta) \cdot v=\alpha \cdot v+\beta \cdot v$.
9. $(\alpha \beta) \cdot v=\alpha \cdot(\beta \cdot v)$.
10. $1 \cdot v=v$

Remark 1.0.1 1. Elements of E are called vectors, and elements of \mathbb{R} are called scalars. Instead of vector space on \mathbb{R} we also say, \mathbb{R} - vector space.
2. It can be shown that $0 \cdot v=0$ for any vector v in E.

To better understand the definition of a vector space, we first consider a few elementary examples.

Example 1.0.1 \quad 1. $\mathbb{R}^{2}, \mathbb{R}^{3}$ and more generally \mathbb{R}^{n} are real vector spaces.
2. The set of applications from \mathbb{R} into \mathbb{R} is a vector space on \mathbb{R}.
3. Let E be the unit disc in \mathbb{R}^{2} :

$$
E=\left\{(x, y) \in \mathbb{R}^{2} / \quad x^{2}+y^{2} \leq 1\right\}
$$

The circle is not closed under scalar multiplication. For example, take $u=(1,0) \in E$ and multiply by say $\alpha=2$. Then $\alpha u=(2,0)$ is not in E. Therefore, property (6) of the definition of a vector space fails, and consequently the unit disc is not a vector space.
4. Let E be the graph of the quadratic function $f(x)=x^{2}$:

$$
E=\left\{(x, y) \in \mathbb{R}^{2} / \quad y=x^{2}\right\}
$$

The set E is not closed under scalar multiplication. For example, $u=(1,1)$ is a point in E but $2 u=(2,2)$ is not. You may also notice that E is not closed under addition either. For example, both $u=(1,1)$ and $v=(2,4)$ are in E but $u+v=(3,5)$ and $(3,5)$ is not a point on the parabola E. Therefore, the graph of $f(x)=x^{2}$ is not a vector space.
5. $\mathcal{F}(\mathbb{R}, \mathbb{R})$: The vector space of functions from \mathbb{R} into \mathbb{R}.
a/ Let f and g two elements of $\mathcal{F}(\mathbb{R}, \mathbb{R})$. The function $f+g$ is defined by :

$$
\forall x \in \mathbb{R}, \quad(f+g)(x)=f(x)+g(x)
$$

b/ If λ is a real number and f is a function of $\mathcal{F}(\mathbb{R}, \mathbb{R})$, the function $\lambda . f$ is defined by the image of any real x as follows :

$$
\forall x \in \mathbb{R}, \quad(\lambda \cdot f)(x)=\lambda f(x)
$$

c/ The identity The identity for addition is the null function, defined by :

$$
\forall x \in \mathbb{R}, \quad f(x)=0
$$

This function can be written $0_{E}=0_{\mathcal{F}(\mathbb{R}, \mathbb{R})}$.
d/ The inverses The inverse of f in $\mathcal{F}(\mathbb{R}, \mathbb{R})$ is the function g from \mathbb{R} to \mathbb{R} defined by :

$$
\forall x \in \mathbb{R}, \quad g(x)=-f(x)
$$

The inverse of f is noted $-f$.
6. Let $E=\mathbb{R}_{2}[X]=\left\{P=a X^{2}+b X+c, \quad a, b, c \in \mathbb{R}\right)$ be the set of polynomials of degree less than or equal to 2 , with coefficients in \mathbb{R}, provided with the following operations:
$a /$ A law " $+"$, given by : $\forall P, Q \in E, \quad P=a X^{2}+b X+c, \quad Q=a^{\prime} X^{2}+b^{\prime} X+c^{\prime}$,

$$
P+Q=\left(a+a^{\prime}\right) X^{2}+\left(b+b^{\prime}\right) X+\left(c+c^{\prime}\right)
$$

b/ A law"." defined by : $\forall \alpha \in \mathbb{R}, \quad \forall P \in E, \quad P=a X^{2}+b X+c$,

$$
\alpha \cdot P=(\alpha a) X^{2}+(\alpha b) X+(\alpha c) .
$$

$(E,+, \cdot)$ is a vectorial space on \mathbb{R}.

1.1 Subspaces of Vector Spaces

Frequently, one encounters a vector space F that is a subset of a larger vector space E. In this case, we would say that F is a subspace of E. Below is the formal definition.

Definition 1.1.1 Let E be a vector space. A subset F of E is called a subspace of E if it satisfies the following properties :

1. The zero vector of E is also in F.
2. F is closed under addition, that is, if u and v are in F then $u+v$ is in F.
3. F is closed under scalar multiplication, that is, if u is in F and α is a scalar then $\alpha \cdot u$ is in F.

Example 1.1.1 Let F be the graph of the function $f(x)=2 x$:

$$
F=\left\{(x, y) \in \mathbb{R}^{2} \mid y=2 x\right\} .
$$

F a subspace of $E=\mathbb{R}^{2}$.
If $x=0$ then $y=2 \cdot 0=0$ and therefore $(0,0)$ is in F.
Let $u=(a, 2 a)$ and $v=(b, 2 b)$ be elements of F. Then $u+v=(a, 2 a)+(b, 2 b)=(a+b, 2 a+2 b)=$ $(a+b, 2(a+b))$ Because the x and y components of $u+v$ satisfy $y=2 x$ then $u+v$ is inside in F. Thus, F is closed under addition.
Let α be any scalar and let $u=(a, 2 a)$ be an element of F. Then $\alpha u=(\alpha a, \alpha 2 a)=(\alpha a, 2 \alpha a) \in$ F. F is closed under scalar multiplication.
All three conditions of a subspace are satisfied for F and therefore F is a subspace of E.
Example 1.1.2 Let F be the first quadrant in \mathbb{R}^{2} :

$$
F=\left\{(x, y) \in \mathbb{R}^{2} \mid \quad x \geq 0, y \geq 0\right\} .
$$

The set F contains the zero vector and the sum of two vectors in F is again in F. However, F is not closed under scalar multiplication. For example if $u=(1,1)$ and $\alpha=-1$, then $\alpha u=(-1,-1)$ is not in F because the components of αu are clearly not non-negative.

Example 1.1.3 Let $E=\mathbb{R}_{n}[t]$ and consider the subset F of E :

$$
F=\left\{P(t) \in \mathbb{R}_{n}[t] / \quad P^{\prime}(1)=0\right\}
$$

F is a subspace of E.
The zero polynomial $0(t)$ clearly has derivative at $t=1$ equal to zero, that is, $0^{\prime}(1)=0$, and thus the zero polynomial is in F. Now suppose that $P(t)$ and $Q(t)$ are two polynomials in F. Then, $P^{\prime}(1)=0$ and also $Q^{\prime}(1)=0$, from the rules of differentiation, we compute $(P+Q)^{\prime}(1)=P^{\prime}(1)+Q^{\prime}(1)=0+0$.
Therefore, the polynomial $(P+Q)(t)$ is in F, and thus F is closed under addition.
Now let α be any scalar and let $P(t)$ be a polynomial in F. Then $P^{\prime}(1)=0$. Using the rules of differentiation, we compute that $(\alpha P)^{\prime}(1)=\alpha P^{\prime}(1)=\alpha .0=0$. Therefore, the polynomial $(\alpha P)(t)$ is in F and thus F is closed under scalar multiplication.
All three properties of a subspace hold for F and therefore F is a subspace of $\mathbb{R}_{n}[t]$.
Example 1.1.4 1. Any field \mathbb{K} is a vectorspace on \mathbb{K}.
C. H .
2. Any field \mathbb{L} containing a field \mathbb{K} is a vector space on \mathbb{K} and \mathbb{K} is a vector subspace of \mathbb{L}.
3. \mathbb{C} is a vector space on \mathbb{R} and \mathbb{R} is a subspace of \mathbb{C}.

Example 1.1.5 Consider $F=\left\{(x, y) \in \mathbb{R}^{2} / x^{2}+y^{2}<0\right\}, F=\emptyset$, so F is not a subspace of \mathbb{R}^{2}.

Example 1.1.6 Let $F=\left\{(x, y) \in \mathbb{R}^{2} / \quad x-y+1=0\right\}$, we have : $0_{\mathbb{R}^{2}}=(0,0) \notin F$, since $0-0+1 \neq 0$ therefore F is not a subspace of \mathbb{R}^{2}.

Example 1.1.7 Let $F=\left\{(x, y) \in \mathbb{R}^{2} / \quad x y \geq 0\right\}$, we have $(2,1),(-1,-2) \in F$, but $(2,1)+$ $(-1,-2)=(1,-1) \notin F$ because does not check $x y \geq 0$ so F is not a subspace of \mathbb{R}^{2}.

1.2 Operation on vector subspaces

Proposition 1.2.1 Let \mathbb{K} be a field, E a \mathbb{K}-vector space, F and G two subspaces of E, then:

1. $F \cap G$ is a subspace of E.
2. $F \cup G$ is a subspace of E if and only if, $F \subset G$ or $G \subset F$.

Proof 1.2.1 (of 1.) We have F and G are subspaces of E, then : $(F \subset E$ and $G \subset E$ therefore $F \cap G \subset E$.)
a/ $0_{E} \in F$ and $0_{E} \in G$ which means that $0_{E} \in F \cap G$.
b/ $\forall \alpha, \beta \in \mathbb{K}, \quad \forall x, y \in F \cap G$ (i.e. $x \in F \wedge x \in G$), we have $\alpha x+\beta y \in F$ and $\alpha x+\beta y \in G$, therefore $\alpha x+\beta y \in F \cap G$. Then $F \cap G$ is a subspace of E.

Remark 1.2.1 We generalize the property (1) to any family of vector subspaces, i.e. If $\left(F_{i}\right)_{i \in I, I \subset \mathbb{N}}$, is a family of subvector spaces, then $\cap_{i \in I} F_{i}$ is a subspace.

Example 1.2.1 Let $E=\mathbb{R}^{2}$ be the vector space on \mathbb{R}. Consider the following subspaces F and G :

$$
F=\left\{(x, y) \in \mathbb{R}^{2} / \quad y=0\right\}, \quad G=\left\{(x, y) \in \mathbb{R}^{2} / \quad x=0\right\} .
$$

F and G are the x-axis and y-axis respectively.
Since $(1,0) \in F$ with $(1,0) \notin G$, then $F \nsubseteq G$ and $(0,1) \in G$ with $(0,1) \notin F$, then $G \nsubseteq F$. Therefore, $F \cup G$ is not a subspace of \mathbb{R}^{2}.
The result can be obtained by noting that $(1,0),(0,1) \in F \cup G$ but $(1,0)+(0,1)=(1,1) \notin F$ and $(1,1) \notin G$ then $(1,1) \notin F \cup G$. This means that $F \cup G$ is not a subspace of E.

Theoreme 1.2.1 Let \mathbb{K} be a field, E a vector space on \mathbb{K}, F and G two subspaces of E. The set $F+G$ defined by

$$
F+G=\{x+y / \quad x \in F \quad \text { and } \quad y \in G\} \subset E
$$

is a subspace of E called sum of the subspaces F and G. If in addition $F \cap G=\left\{0_{E}\right\}$, we say that the sum $F+G$ is a direct sum and we write $F \oplus G$.

Proof 1.2.2 $F+G$ is a subspace of E :

1. $0_{E}=0_{E}+0_{E} \in F+G$ because $0_{E} \in F$ and $0_{E} \in G$ since F and G are two subspaces of E.
C. H.
2. $\forall \alpha, \beta \in \mathbb{K}, \quad \forall z, z^{\prime} \in F+G$, then $z=x+y$ and $z^{\prime}=x^{\prime}+y^{\prime}$ with $x, x^{\prime} \in F$ and $y, y^{\prime} \in G$. Since F and G are subspaces of E, then

$$
\alpha x+\beta x^{\prime} \in F \quad \text { and } \quad \alpha y+\beta y^{\prime} \in G .
$$

This means that $\left(\alpha x+\beta x^{\prime}\right)+\left(\alpha y+\beta y^{\prime}\right) \in F+G$.
Therefore $\left(\alpha x+\beta x^{\prime}\right)+\left(\alpha y+\beta y^{\prime}\right)=\alpha(x+y)+\beta\left(x^{\prime}+y^{\prime}\right) \in F+G$, i.e. $\alpha z+\beta z^{\prime} \in F+G$
Example 1.2.2 Consider the vector space \mathbb{R}^{3}, the subspaces F and H given by

$$
F=\left\{(x, y, z) \in \mathbb{R}^{3} / x+y-z=0\right\} \quad \text { and } \quad H=\left\{(x, y, z) \in \mathbb{R}^{3} / x=y=0\right\} .
$$

We have $F+G=F \oplus G$. Indeed:
Let $(x, y, z) \in F \cap H$, so $(x, y, z) \in F$, i.e. $z=x+y$ and $(x, y, z) \in H$ i.e. $x=y=0$, so $x=y=z=0$, therefore $F \cap H=\left\{0_{\mathbb{R}^{3}}\right\}$.

Example 1.2.3 For any vector space E, there are two trivial subspaces in E, namely, E itself is a subspace of E and the set consisting of the zero vector $F=\{0\}$ is a subspace of E.

There is one particular way to generate a subspace of any given vector space E using the span of a set of vectors.

2 Linear combinations, generating famillies, linearly independant famillies, bases, dimension.

2.1 Linear combinations

Let $v_{1}, v_{2}, \cdots, v_{n}$ be a familly of vectors of a vector space on \mathbb{K}, We call linear combination of these vectors any vector of type

$$
v=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n} .
$$

The scalars $\lambda_{1}, \cdots, \lambda_{n}$ are called the coefficients of the linear combination.
The span of $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is the set of all linear combinations of $v_{1}, v_{2}, \cdots, v_{n}$.

$$
\operatorname{span}\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}=\left\{\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n} / \quad \lambda_{1}, \cdots, \lambda_{n} \in \mathbb{R}\right\}
$$

The span of a set of vectors in E is a subspace of E.

2.2 Generating famillies

Definition 2.2.1 The family $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is a generating family of the vector space E if every vector of E is a linear combination of the vectors $v_{1}, v_{2}, \cdots, v_{n}$. This can also be written :

$$
\forall v \in E, \quad \exists \lambda_{1}, \lambda_{2}, \cdots, \lambda_{n} \in \mathbb{K} / \quad v=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{n}
$$

We also say that the family $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ generates the vector space E and we write

$$
E=\operatorname{span}\left\{v_{1}, v_{2}, \cdots v_{n}\right\}
$$

C. H.

Example 2.2.1 Let the vectors $v_{1}=(2,1), v_{2}=(1,1) \in \mathbb{R}^{2}$ The vectors $\left\{v_{1}, v_{2}\right\}$ form a generating family of \mathbb{R}^{2}. Indeed, let $v=(x, y) \in \mathbb{R}^{2}$, showing that v is a linear combination of v_{1} and v_{2} is equivalent to demonstrate the existence of two real numbers α and β such that $v=\alpha v_{1}+\beta v_{2}$. So we need to study the existence of solutions to the system:

$$
\begin{gathered}
2 \alpha+\beta=x \\
\alpha+\beta=y
\end{gathered}
$$

Its solutions are $\alpha=x-y$ and $\beta=-x+2 y$, whatever the real numbers x and y.
This proves that there can be several different finite families, not included in each other, generating the same vector space.

Example 2.2.2 Let $E=\mathbb{R}_{n}[X]$ be the vector space of polynomials of degree $\leq n$. Then the polynomials $\left\{1, X, \cdots, X^{n}\right\}$ form a generating family of E.

2.3 Linearly independent famillies

Definition 2.3.1 1. A familly $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ of vectors of a vector space E is linearly independent if the only linear combination of these vectors equal to the zero vector is the one whose coefficients are all zero. We also say that vectors $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ are linearly independent. This can be expressed as :
$\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is a linearly independent familly is equivalent to :

$$
\left(\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \mathbb{K}^{n} \text { and } \quad \lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{p}=0_{E}\right) \Rightarrow \lambda_{1}=\lambda_{2}=\cdots=\lambda_{n}=0 .
$$

2.4 Linearly dependent famillies

Definition 2.4.1 1. A non linearly independent familly is called a linearly dependent familly. We also say that vectors $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ are linearly dependents.
This can be expressed as : $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is a linearly dependent familly is equivalent to

$$
\left(\exists\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \mathbb{K}^{n}-\left\{0_{\mathbb{K}^{n}}\right\} / \quad \lambda_{1} v_{1}+\lambda_{2} v_{2}+\cdots+\lambda_{n} v_{p}=0_{E}\right) .
$$

Example 2.4.1 The polynomials $P_{1}(X)=1-X, P_{2}(X)=5+3 X-2 X^{2}$ and $P_{3}(X)=$ $1+3 X-X^{2}$ form a linearly dependent family in the vector space $\mathbb{R}_{2}[X]$, because $3 P_{1}(X)-$ $P_{2}(X)+2 P_{3}(X)=0$.

Example 2.4.2 In the vector space $\mathcal{F}(\mathbb{R}, \mathbb{R})$ of functions from \mathbb{R} into \mathbb{R}, consider the family $\{\cos , \sin \}$. Let's show that it's a linearly independent family.
Suppose we have $\lambda \cos +\mu \sin =0$, which is equivalent to $\forall x \in \mathbb{R}, \lambda \cos (x)+\mu \sin (x)=0$. In particular, for $x=0$, this equality gives $\lambda=0$. And for $x=\pi / 2$, it gives $\mu=0$. So $\{\cos , \sin \}$ is a linearly independent family.
On the other hand, the family $\left\{\cos ^{2}, \sin ^{2} 1\right\}$ is linearly dependent because we have : $\cos ^{2}+\sin ^{2}-1=$ 0 .
The coefficients of the linear dependence are $\lambda_{1}=1, \lambda_{2}=1, \lambda_{3}=-1$.
Example 2.4.3 In the vector space \mathbb{R}^{4} defined over the field \mathbb{R}, consider the following vectors:

$$
v_{1}=(1,0,-1,1), v_{2}=(0,1,1,0), v_{3}=(1,0,0,1), v_{4}=(0,0,0,1), v_{5}=(1,1,0,1) .
$$

The set $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is linearly independent (to be verified). The set $S_{2}=\left\{v_{1}, v_{2}, v_{5}\right\}$ is linearly dependent ($v_{5}=v_{1}+v_{2}$).
C. H .

Theoreme 2.4.1 Let E be a vector space over the field \mathbb{K}. A set $F=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ of n vectors of $E,(n>2)$ is linearly dependent if and only if at least one of the vectors of F is a linear combination of the other vectors of F.

Remark 2.4.1 1. Any family containing a linearly dependent family is linearly dependent.
2. Any family included in a linearly independent family is linearly independent.
3. $\{v\}$ is linearly independent if and only if $v \neq 0$.
4. Any set containing the null vector is linearly dependent.

2.5 Basis

A basis of a vector space is linearly independent generating familly.
If $B=\left(x_{i}\right)_{i \in I}, I \subset \mathbb{N}$ is a basis of E, then any $x \in E$ is uniquely written as a linear combination of elements of B.

$$
x=\sum_{i \in I} \alpha_{i} x_{i}
$$

The scalars $\left(\alpha_{i}\right)_{i \in I}$, are called the coordinates of x in the basis B.

3 Finite dimensional vector spaces

Definition 3.0.1 If a vector space is spanned by a finite number of vectors, it is said to be finite-dimensional.
Otherwise it is infinite-dimensional. The number of vectors in a basis for a finite-dimensional vector space E is called the dimension of E and denoted dimE.
By convention, we say that $\left\{0_{E}\right\}$ is a finite-dimensional space.
Definition 3.0.2 A family $\left\{v_{1}, \cdots, v_{n}\right\}$ of vectors of E is said to be a basis of E if and only if, we have :

1. $\left\{v_{1}, \cdots, v_{n}\right\}$ is a linearly independent family of E and
2. $\left\{v_{1}, \cdots, v_{n}\right\}$ is a generating family of E.

Example 3.0.1 1. The set $(1, i)$ is a basis of the \mathbb{R}-vector space \mathbb{C}.
Indeed, if $a, b \in \mathbb{R}$ are such that $a .1+b . i=0$ then $a+i b=0+i 0$ and therefore $a=b=0$.
The set is therefore linearly independent.
For any complex number, there are $a, b \in \mathbb{R}$ such that $z=a+i b$, then $(1, i)$ is a generating set of \mathbb{C}, it is therefore a basis of \mathbb{C}.
2. In \mathbb{R}^{3}, the set $\left\{e_{1}=(1,0,0), e_{2}=(0,1,0), e_{3}=(0,0,1)\right\}$ forms a basis of \mathbb{R}^{3}, called canonical basis of \mathbb{R}^{3}.
The set $\left\{v_{1}=(1,0,1), v_{2}=(1,-1,1) v_{3}=(0,1,1)\right\}$ is a basis of \mathbb{R}^{3}. Indeed :
a/ The family is linearly independent.
Let $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{R}$ such that $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}=0_{\mathbb{R}^{3}}$. Then

$$
\begin{array}{cc}
\alpha_{1}+\alpha_{2} & =0 \\
\alpha_{2}+\alpha_{3} & =0 \\
\alpha_{1}+\alpha_{2}+\alpha_{3} & =0
\end{array}
$$

C. H .
which leads to $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$.
$b /$ The set is generating of \mathbb{R}^{3}. Let $(x, y, z) \in \mathbb{R}^{3}$. We are looking for $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{R}$ such that $(x, y, z)=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}$. We then obtain the system

$$
\begin{array}{rlr}
\alpha_{1}+\alpha_{2} & =x \\
\alpha_{2}+\alpha_{3} & =y \\
\alpha_{1}+\alpha_{2}+\alpha_{3} & =z
\end{array}
$$

and we find $\alpha_{1}=2 x+y-z, \alpha_{2}=x-y+z$ and $\alpha_{3}=-x+z$.
So span $\left\{v_{1}=(1,0,1), v_{2}=(1,-1,1), v_{3}=(0,1,1)\right\}=\mathbb{R}^{3}$. Then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis of \mathbb{R}^{3}.

More generally, we have :

Proposition 3.0.1 Canonical base of \mathbb{K}^{n}

Consider the vector space $E=\mathbb{K}^{n}$ over the field \mathbb{K}.
The standard basis vectors of E are a specific set of basis vectors that are commonly used in linear algebra. They are the unit vectors in each dimension of the vector space :
$\left(e_{1}, e_{2}, \cdots, e_{n}\right)$ of \mathbb{K}^{n} called canonical and given by :

$$
e_{1}=(1,0,0, \cdots, 0), e_{2}=(0,1,0,0, \cdots, 0), \cdots, e_{n}=(0,0,0, \cdots 0,1)
$$

Proposition 3.0.2 Canonical base of $\mathbb{K}_{n}[X]$
Let $n \in \mathbb{N}$. Consider the vector space $E=\mathbb{K}_{n}[X]$ of polynomials of degree $\leq n$ with coefficients in \mathbb{K}. There is a specific basis of $\mathbb{K}_{n}[X]$ called canonical, given by $\left\{1, X, X^{2}, \cdots, X^{n}\right\}$.
Theoreme 3.0.1 Theorem of the extracted basis From any finite generating family of E, we can extract a basis of E. In particular, a finite-dimensional space admits a basis.
Theoreme 3.0.2 Incomplete basis theorem If E is finite-dimensional, then any linearly independent family of E can be completed into a basis of E. To complete it, simply consider certain vectors of a generating family of E.
Theoreme 3.0.3 Dimension If E is finite-dimensional, then all bases of E have the same number of vectors (dimension of E).
Corollary 3.0.1 If E is a finite-dimensional vector space ($\operatorname{dimE}=n$) and if $B=\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ is a family of n vectors of E, then the following conditions are equivalent:

1. B is linearly independent.
2. B is a generating set of E.
3. B is a basis of E.

Remark 3.0.1 1. In particular, in a n-dimensional space, a linearly independent set always has at most n elements, and a generating family always has at least n elements.
2. If E and F are finite-dimensional, then $\operatorname{dim}(E \times F)=\operatorname{dim}(E)+\operatorname{dim}(F)$. In particular, $\operatorname{dim}\left(\mathbb{K}^{n}\right)=n$.
3. $\operatorname{dim}\left(\mathbb{K}_{n}[X]\right)=n+1$.

Definition 3.0.3 If $\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ is a finite set of E, we call rank of $\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ the dimension of $F=\operatorname{Vect}\left(v_{1}, v_{2}, \cdots, v_{n}\right)$.

Let $G=\left\{v_{1}=(2,1), v_{2}=(4,2), v_{3}=(-3,4)\right\}$ be a subset of \mathbb{R}^{2}. Let's determine the rank of G.
The set G is linearly dependent $\left(v_{2}=2 v_{1}\right)$, so $\operatorname{span}\left(v_{1}, v_{2}, v_{3}\right)=\operatorname{span}\left(v_{2}, v_{3}\right)$, so $\operatorname{rank}(G)=2$.
C. H .

3.1 Subspaces and dimension

If E is a finite-dimensional vector space and if F is a subspace of E, then we have $\operatorname{dim}(F) \leq$ $\operatorname{dim}(E)$ and Furthermore :

$$
\operatorname{dim}(F)=\operatorname{dim}(E) \Leftrightarrow F=E
$$

Grassmann formula : Let E be a finite-dimensional vector space and let F, G be two subspaces of E. Then

$$
\operatorname{dim}(F+G)=\operatorname{dim}(F)+\operatorname{dim}(G)-\operatorname{dim}(F \cap G)
$$

In particular, F and G are in direct sum if and only if

$$
\operatorname{dim}(F+G)=\operatorname{dim}(F)+\operatorname{dim}(G) .
$$

