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1 Vector Spaces
When you read the word vector you may immediately think of two points in R2 (or R3 )

connected by an arrow. Mathematically speaking, a vector is just an element of a vector space.
This then begs the question : What is a vector space ? Roughly speaking, a vector space is a
set of objects that can be added and multiplied by scalars.

Definition 1.0.1 A vector space is a set E of objects, called vectors, on which two operations
called addition and scalar multiplication have been defined satisfying the following properties.
If u, v, w are in E and if α, β ∈ R are scalars :

1. The sum u+ v is in E. (closure under addition)
2. u+ v = v + u (addition is commutative)
3. (u+ v) + w = u+ (v + w) (addition is associative)
4. There is a vector in E called the zero vector, denoted by 0, satisfying v + 0 = v.
5. For each v there is a vector −v in E such that v + (−v) = 0.
6. The scalar multiple of v by α, denoted α · v, is in E. (closure under scalar multipli-

cation)
7. α · (u+ v) = α · u+ α · v.
8. (α + β) · v = α · v + β · v.
9. (αβ) · v = α · (β · v) .
10. 1 · v = v

Remark 1.0.1 1. Elements of E are called vectors, and elements of R are called scalars.
Instead of vector space on R we also say, R− vector space.

2. It can be shown that 0 · v = 0 for any vector v in E.

To better understand the definition of a vector space, we first consider a few elementary
examples.

Example 1.0.1 1. R2,R3 and more generally Rn are real vector spaces.
2. The set of applications from R into R is a vector space on R.
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3. Let E be the unit disc in R2 :

E =
{
(x, y) ∈ R2/ x2 + y2 ≤ 1

}
The circle is not closed under scalar multiplication. For example, take u = (1, 0) ∈ E
and multiply by say α = 2. Then αu = (2, 0) is not in E. Therefore, property (6) of the
definition of a vector space fails, and consequently the unit disc is not a vector space.

4. Let E be the graph of the quadratic function f(x) = x2 :

E =
{
(x, y) ∈ R2/ y = x2

}
The set E is not closed under scalar multiplication. For example, u = (1, 1) is a point in
E but 2u = (2, 2) is not. You may also notice that E is not closed under addition either.
For example, both u = (1, 1) and v = (2, 4) are in E but u+ v = (3, 5) and (3, 5) is not
a point on the parabola E. Therefore, the graph of f(x) = x2 is not a vector space.

5. F(R,R) : The vector space of functions from R into R.

a/ Let f and g two elements of F(R,R). The function f + g is defined by :

∀x ∈ R, (f + g)(x) = f(x) + g(x)

b/ If λ is a real number and f is a function of F(R,R), the function λ.f is defined by the
image of any real x as follows :

∀x ∈ R, (λ.f)(x) = λf(x)

c/ The identity The identity for addition is the null function, defined by :

∀x ∈ R, f(x) = 0.

This function can be written 0E = 0F(R,R).
d/ The inverses The inverse of f in F(R,R) is the function g from R to R defined by :

∀x ∈ R, g(x) = −f(x).

The inverse of f is noted −f .
6. Let E = R2 [X] = {P = aX2 + bX + c, a, b, c ∈ R) be the set of polynomials of degree

less than or equal to 2, with coefficients in R, provided with the following operations :
a/ A law ” + ”, given by : ∀P,Q ∈ E, P = aX2 + bX + c, Q = a′X2 + b′X + c′,

P +Q = (a+ a′)X2 + (b+ b′)X + (c+ c′).

b/ A law ” · ” defined by : ∀α ∈ R, ∀P ∈ E, P = aX2 + bX + c,

α · P = (αa)X2 + (αb)X + (αc).

(E,+, ·) is a vectorial space on R.
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1.1 Subspaces of Vector Spaces

Frequently, one encounters a vector space F that is a subset of a larger vector space E. In
this case, we would say that F is a subspace of E. Below is the formal definition.

Definition 1.1.1 Let E be a vector space. A subset F of E is called a subspace of E if it
satisfies the following properties :

1. The zero vector of E is also in F .
2. F is closed under addition, that is, if u and v are in F then u+ v is in F .
3. F is closed under scalar multiplication, that is, if u is in Fand α is a scalar then α · u

is in F .

Example 1.1.1 Let F be the graph of the function f(x) = 2x :

F =
{
(x, y) ∈ R2|y = 2x

}
.

F a subspace of E = R2.
If x = 0 then y = 2 · 0 = 0 and therefore (0, 0) is in F .
Let u = (a, 2a) and v = (b, 2b) be elements of F . Then u+v = (a, 2a)+(b, 2b) = (a+b, 2a+2b) =
(a + b, 2(a + b)) Because the x and y components of u + v satisfy y = 2x then u + v is inside
in F . Thus, F is closed under addition.
Let α be any scalar and let u = (a, 2a) be an element of F . Then αu = (αa, α2a) = (αa, 2αa) ∈
F . F is closed under scalar multiplication.
All three conditions of a subspace are satisfied for F and therefore F is a subspace of E.

Example 1.1.2 Let F be the first quadrant in R2 :

F =
{
(x, y) ∈ R2| x ≥ 0, y ≥ 0

}
.

The set F contains the zero vector and the sum of two vectors in F is again in F . However,
F is not closed under scalar multiplication. For example if u = (1, 1) and α = −1, then
αu = (−1,−1) is not in F because the components of αu are clearly not non-negative.

Example 1.1.3 Let E = Rn[t] and consider the subset F of E :

F = {P (t) ∈ Rn[t]/ P ′(1) = 0}

F is a subspace of E.
The zero polynomial 0(t) clearly has derivative at t = 1 equal to zero, that is, 0′(1) = 0,
and thus the zero polynomial is in F . Now suppose that P (t) and Q(t) are two polynomials
in F . Then, P ′(1) = 0 and also Q′(1) = 0, from the rules of differentiation, we compute
(P +Q)′(1) = P ′(1) +Q′(1) = 0 + 0.
Therefore, the polynomial (P +Q)(t) is in F , and thus F is closed under addition.
Now let α be any scalar and let P (t) be a polynomial in F . Then P ′(1) = 0. Using the rules
of differentiation, we compute that (αP )′(1) = αP ′(1) = α.0 = 0. Therefore, the polynomial
(αP )(t) is in F and thus F is closed under scalar multiplication.
All three properties of a subspace hold for F and therefore F is a subspace of Rn[t].

Example 1.1.4 1. Any field K is a vectorspace on K.
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2. Any field L containing a field K is a vector space on K and K is a vector subspace of L.
3. C is a vector space on R and R is a subspace of C.

Example 1.1.5 Consider F = {(x, y) ∈ R2/ x2 + y2 < 0}, F = ∅, so F is not a subspace of
R2.

Example 1.1.6 Let F = {(x, y) ∈ R2/ x− y + 1 = 0}, we have : 0R2 = (0, 0) /∈ F , since
0− 0 + 1 6= 0 therefore F is not a subspace of R2.

Example 1.1.7 Let F = {(x, y) ∈ R2/ xy ≥ 0}, we have (2, 1), (−1,−2) ∈ F , but (2, 1) +
(−1,−2) = (1,−1) /∈ F because does not check xy ≥ 0 so F is not a subspace of R2.

1.2 Operation on vector subspaces

Proposition 1.2.1 Let K be a field, E a K−vector space, F and G two subspaces of E, then :
1. F ∩G is a subspace of E.
2. F ∪G is a subspace of E if and only if, F ⊂ Gor G ⊂ F .

Proof 1.2.1 (of 1.) We have F and G are subspaces of E, then : (F ⊂ E and G ⊂ E therefore
F ∩G ⊂ E.)

a/ 0E ∈ F and 0E ∈ G which means that 0E ∈ F ∩G.
b/ ∀α, β ∈ K, ∀x, y ∈ F ∩ G (i.e. x ∈ F ∧ x ∈ G), we have αx + βy ∈ F and αx + βy ∈ G,
therefore αx+ βy ∈ F ∩G. Then F ∩G is a subspace of E.

Remark 1.2.1 We generalize the property (1) to any family of vector subspaces, i.e. If (Fi)i∈I,I⊂N,
is a family of subvector spaces, then ∩i∈IFi is a subspace.

Example 1.2.1 Let E = R2 be the vector space on R. Consider the following subspaces F and
G :

F =
{
(x, y) ∈ R2/ y = 0

}
, G =

{
(x, y) ∈ R2/ x = 0

}
.

F and G are the x-axis and y-axis respectively.
Since (1, 0) ∈ F with (1, 0) /∈ G, then F * G and (0, 1) ∈ G with (0, 1) /∈ F, then G * F.
Therefore, F ∪G is not a subspace of R2.
The result can be obtained by noting that (1, 0), (0, 1) ∈ F ∪ G but (1, 0) + (0, 1) = (1, 1) /∈ F
and (1, 1) /∈ G then (1, 1) /∈ F ∪G. This means that F ∪G is not a subspace of E.

Theoreme 1.2.1 Let K be a field, E a vector space on K, F and G two subspaces of E.
The set F +G defined by

F +G = {x+ y/ x ∈ F and y ∈ G} ⊂ E

is a subspace of E called sum of the subspaces F and G. If in addition F ∩G = {0E}, we say
that the sum F +G is a direct sum and we write F ⊕G.

Proof 1.2.2 F +G is a subspace of E :
1. 0E = 0E + 0E ∈ F +G because 0E ∈ F and 0E ∈ G since F and G are two subspaces of

E.
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2. ∀α, β ∈ K, ∀z, z′ ∈ F +G, then z = x+ y and z′ = x′+ y′with x, x′ ∈ F and y, y′ ∈ G.
Since F and G are subspaces of E, then

αx+ βx′ ∈ F and αy + βy′ ∈ G.

This means that (αx+ βx′) + (αy + βy′) ∈ F +G.

Therefore (αx+βx′)+ (αy+βy′) = α(x+y)+β(x′+y′) ∈ F +G, i.e. αz+βz′ ∈ F +G

Example 1.2.2 Consider the vector space R3, the subspaces F and H given by

F =
{
(x, y, z) ∈ R3/x+ y − z = 0

}
and H =

{
(x, y, z) ∈ R3/x = y = 0

}
.

We have F +G = F ⊕G. Indeed :
Let (x, y, z) ∈ F ∩ H, so (x, y, z) ∈ F, i.e. z = x + y and (x, y, z) ∈ H i.e. x = y = 0, so
x = y = z = 0, therefore F ∩H = {0R3} .

Example 1.2.3 For any vector space E, there are two trivial subspaces in E, namely, E itself
is a subspace of E and the set consisting of the zero vector F = {0}is a subspace of E.

There is one particular way to generate a subspace of any given vector space E using the
span of a set of vectors.

2 Linear combinations, generating famillies, linearly inde-
pendant famillies, bases, dimension.

2.1 Linear combinations

Let v1, v2, · · · , vn be a familly of vectors of a vector space on K, We call linear combination
of these vectors any vector of type

v = λ1v1 + λ2v2 + · · ·+ λnvn.

The scalars λ1, · · · , λn are called the coefficients of the linear combination.
The span of {v1, v2, · · · , vn} is the set of all linear combinations of v1, v2, · · · , vn.

span {v1, v2, · · · , vn} = {λ1v1 + λ2v2 + · · ·+ λnvn/ λ1, · · · , λn ∈ R}

The span of a set of vectors in E is a subspace of E.

2.2 Generating famillies

Definition 2.2.1 The family {v1, v2, · · · , vn} is a generating family of the vector space E if
every vector of E is a linear combination of the vectors v1, v2, · · · , vn. This can also be written :

∀v ∈ E, ∃λ1, λ2, · · · , λn ∈ K/ v = λ1v1 + λ2v2 + · · ·+ λnvn

We also say that the family {v1, v2, · · · , vn} generates the vector space E and we write

E = span {v1, v2, · · · vn}

.

C. H. Page 5



Lecture Notes Vector Spaces

Example 2.2.1 Let the vectors v1 = (2, 1), v2 = (1, 1) ∈ R2 The vectors {v1, v2} form a
generating family of R2. Indeed, let v = (x, y) ∈ R2, showing that v is a linear combination
of v1 and v2 is equivalent to demonstrate the existence of two real numbers α and β such that
v = αv1 + βv2. So we need to study the existence of solutions to the system :

2α + β = x
α + β = y

Its solutions are α = x− y and β = −x+ 2y, whatever the real numbers x and y.
This proves that there can be several different finite families, not included in each other, gene-
rating the same vector space.

Example 2.2.2 Let E = Rn[X] be the vector space of polynomials of degree ≤ n. Then the
polynomials {1, X, · · · , Xn} form a generating family of E.

2.3 Linearly independent famillies

Definition 2.3.1 1. A familly {v1, v2, · · · , vn} of vectors of a vector space E is linearly inde-
pendent if the only linear combination of these vectors equal to the zero vector is the one whose
coefficients are all zero. We also say that vectors {v1, v2, · · · , vn} are linearly independent.
This can be expressed as :
{v1, v2, · · · , vn} is a linearly independent familly is equivalent to :

((λ1, · · · , λn) ∈ Knand λ1v1 + λ2v2 + · · ·+ λnvp = 0E)⇒ λ1 = λ2 = · · · = λn = 0.

2.4 Linearly dependent famillies

Definition 2.4.1 1. A non linearly independent familly is called a linearly dependent familly.
We also say that vectors {v1, v2, · · · , vn} are linearly dependents.
This can be expressed as : {v1, v2, · · · , vn} is a linearly dependent familly is equivalent to

(∃(λ1, · · · , λn) ∈ Kn − {0Kn} / λ1v1 + λ2v2 + · · ·+ λnvp = 0E) .

Example 2.4.1 The polynomials P1(X) = 1 − X,P2(X) = 5 + 3X − 2X2 and P3(X) =
1 + 3X − X2 form a linearly dependent family in the vector space R2 [X], because 3P1(X) −
P2(X) + 2P3(X) = 0.

Example 2.4.2 In the vector space F (R,R) of functions from R into R, consider the family
{cos, sin}. Let’s show that it’s a linearly independent family.
Suppose we have λ cos+µ sin = 0, which is equivalent to ∀x ∈ R, λ cos(x) + µ sin(x) = 0. In
particular, for x = 0, this equality gives λ = 0. And for x = π/2, it gives µ = 0. So {cos, sin}
is a linearly independent family.
On the other hand, the family

{
cos2, sin2 1

}
is linearly dependent because we have : cos2+sin2−1 =

0.
The coefficients of the linear dependence are λ1 = 1, λ2 = 1, λ3 = −1.

Example 2.4.3 In the vector space R4 defined over the field R, consider the following vectors :

v1 = (1, 0,−1, 1), v2 = (0, 1, 1, 0), v3 = (1, 0, 0, 1), v4 = (0, 0, 0, 1), v5 = (1, 1, 0, 1).

The set {v1, v2, v3, v4} is linearly independent (to be verified). The set S2 = {v1, v2, v5} is linearly
dependent (v5 = v1 + v2).
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Theoreme 2.4.1 Let E be a vector space over the field K. A set F = {v1, v2, · · · , vn} of n
vectors of E, (n > 2) is linearly dependent if and only if at least one of the vectors of F is a
linear combination of the other vectors of F .

Remark 2.4.1 1. Any family containing a linearly dependent family is linearly dependent.
2. Any family included in a linearly independent family is linearly independent.
3. {v} is linearly independent if and only if v 6= 0.
4. Any set containing the null vector is linearly dependent.

2.5 Basis

A basis of a vector space is linearly independent generating familly.
If B = (xi)i∈I , I ⊂ N is a basis of E, then any x ∈ E is uniquely written as a linear combination
of elements of B.

x =
∑
i∈I

αixi

The scalars (αi)i∈I , are called the coordinates of x in the basis B.

3 Finite dimensional vector spaces
Definition 3.0.1 If a vector space is spanned by a finite number of vectors, it is said to be
finite-dimensional.
Otherwise it is infinite-dimensional. The number of vectors in a basis for a finite-dimensional
vector space E is called the dimension of E and denoted dimE.
By convention, we say that {0E} is a finite-dimensional space.

Definition 3.0.2 A family {v1, · · · , vn} of vectors of E is said to be a basis of E if and only
if, we have :

1. {v1, · · · , vn} is a linearly independent family of E and
2. {v1, · · · , vn} is a generating family of E.

Example 3.0.1 1. The set (1, i) is a basis of the R−vector space C.
Indeed, if a, b ∈ R are such that a.1+b.i = 0 then a+ ib = 0+ i0 and therefore a = b = 0.
The set is therefore linearly independent.
For any complex number, there are a, b ∈ R such that z = a+ib, then (1, i) is a generating
set of C, it is therefore a basis of C.

2. In R3, the set {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)} forms a basis of R3, called ca-
nonical basis of R3.
The set {v1 = (1, 0, 1), v2 = (1,−1, 1)v3 = (0, 1, 1)} is a basis of R3. Indeed :

a/ The family is linearly independent.
Let α1, α2, α3 ∈ R such that α1v1 + α2v2 + α3v3 = 0R3. Then

α1 + α2 = 0
α2 + α3 = 0

α1 + α2 + α3 = 0

C. H. Page 7



Lecture Notes Vector Spaces

which leads to α1 = α2 = α3 = 0.
b/ The set is generating of R3. Let (x, y, z) ∈ R3. We are looking for α1, α2, α3 ∈ R such

that (x, y, z) = α1v1 + α2v2 + α3v3. We then obtain the system

α1 + α2 = x
α2 + α3 = y

α1 + α2 + α3 = z

and we find α1 = 2x+ y − z, α2 = x− y + z and α3 = −x+ z.
So span {v1 = (1, 0, 1), v2 = (1,−1, 1), v3 = (0, 1, 1)} = R3. Then {v1, v2, v3} is a basis of
R3.

More generally, we have :

Proposition 3.0.1 Canonical base of Kn

Consider the vector space E = Kn over the field K.
The standard basis vectors of E are a specific set of basis vectors that are commonly used in
linear algebra. They are the unit vectors in each dimension of the vector space :

(e1, e2, · · · , en) of Kn called canonical and given by :

e1 = (1, 0, 0, · · · , 0), e2 = (0, 1, 0, 0, · · · , 0), · · · , en = (0, 0, 0, · · · 0, 1).
Proposition 3.0.2 Canonical base of Kn [X]
Let n ∈ N. Consider the vector space E = Kn [X] of polynomials of degree ≤ n with coefficients
in K. There is a specific basis of Kn [X] called canonical, given by {1, X,X2, · · · , Xn} .
Theoreme 3.0.1 Theorem of the extracted basis From any finite generating family of E,
we can extract a basis of E. In particular, a finite-dimensional space admits a basis.

Theoreme 3.0.2 Incomplete basis theorem If E is finite-dimensional, then any linearly
independent family of E can be completed into a basis of E. To complete it, simply consider
certain vectors of a generating family of E.

Theoreme 3.0.3 Dimension If E is finite-dimensional, then all bases of E have the same
number of vectors (dimension of E).

Corollary 3.0.1 If E is a finite-dimensional vector space (dimE = n) and if B = (v1, v2, · · · , vn)
is a family of n vectors of E, then the following conditions are equivalent :

1. B is linearly independent.
2. B is a generating set of E.
3. B is a basis of E.

Remark 3.0.1 1. In particular, in a n-dimensional space, a linearly independent set al-
ways has at most n elements, and a generating family always has at least n elements.

2. If E and F are finite-dimensional, then dim(E×F ) = dim(E)+ dim(F ). In particular,
dim(Kn) = n.

3. dim(Kn [X]) = n+ 1.

Definition 3.0.3 If (v1, v2, · · · , vn) is a finite set of E, we call rank of (v1, v2, · · · , vn) the
dimension of F = V ect (v1, v2, · · · , vn) .

Let G = {v1 = (2, 1), v2 = (4, 2), v3 = (−3, 4)} be a subset of R2. Let’s determine the rank
of G.
The set G is linearly dependent (v2 = 2v1), so span (v1, v2, v3) = span (v2, v3) , so rank(G) = 2.
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3.1 Subspaces and dimension

If E is a finite-dimensional vector space and if F is a subspace of E, then we have dim(F ) ≤
dim(E) and Furthermore :

dim(F ) = dim(E)⇔ F = E.

Grassmann formula : Let E be a finite-dimensional vector space and let F,G be two subspaces
of E. Then

dim(F +G) = dim(F ) + dim(G)− dim(F ∩G).

In particular, F and G are in direct sum if and only if

dim(F +G) = dim(F ) + dim(G).
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