Algebra tutorial series 2

Exercise 1 Let A and B be two sets defined by : $A =]0, 6[, B = \{x \in \mathbb{N}, x < 3\}$ Determine :

 $A \cap B, \quad A \cup B, \quad \mathbf{C}^B_A, \quad A \cap \mathbb{N}, \quad \mathbf{C}^A_{\mathbb{R}}.$

Exercise 2 Let A, B and C be three subsets of a set E. Show that

1. $C_E^{A \cup B} = C_E^A \cap C_E^B$. 2. $C_E^{A \cap B} = C_E^A \cup C_E^B$. 3. $A \subset B \Leftrightarrow C_E^B \subset C_E^A$.

Where C_E^A denotes the complement of a set A in E. Simplify the following sets :

1. $\mathbf{C}_{E}^{A\cup B} \cap \mathbf{C}_{E}^{(C\cup\mathbf{C}_{E}^{A})};$ 2. $\mathbf{C}_{E}^{A\cap B} \cup \mathbf{C}_{E}^{(C\cap\mathbf{C}_{E}^{A})};$

Exercise 3 Determine the sets A and B that simultaneously satisfy the following conditions :

1. $A \cup B = \{1, 2, 3, 4, 5\},$ 2. $A \cap B = \{3, 4, 5\},$ 3. $1 \notin A \setminus B,$ 4. $2 \notin B \setminus A.$

Exercise 4 Symmetric difference

Let A and B be two parts of a set E. We call the symmetric difference of A and B, and we denote $A\Delta B$, the set defined by :

 $A\Delta B = (A \cup B) \setminus (A \cap B).$

- 1. Make a drawing, then calculate $A\Delta B$ for $A = \{0, 1, 2, 3\}$ and $B = \{2, 3, 4\}$.
- 2. Determine the sets $A\Delta E$, $A\Delta A$ and $A\Delta \emptyset$.
- 3. Suppose $A\Delta B = A \cap B$. Prove by contradiction that : $A = \emptyset$, $(B = \emptyset)$.
- 4. Let $C \in P(E)$. Show that $A\Delta B = A\Delta C$ if and only if B = C.

Exercise 5 Let $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2 + 1$.

- 1. Determine $f(\{-2, 0, 2\}), f^{-1}(\{0\})$.
- 2. Is the map f injective (one-to-one)? Justify.
- 3. Is the map f surjective (onto)? Justify. Consider the sets A = [-3, 2], B = [0, 4].
- 4. Compare the sets $f(A \cap B)$ and $f(A) \cap f(B)$
- 5. What condition must satisfy f so that $f(A \cap B) = f(A) \cap f(B)$.

Exercise 6

A. Let $f : \mathbb{R} \to \mathbb{R}$ defined by :

$$f(x) = \begin{cases} 1, & x < 0\\ 1+x, & x \ge 0 \end{cases}$$

- 1. Determine the following sets : $f(\mathbb{R}), f^{-1}(\{0\}), f^{-1}(\{1\}), f^{-1}(\{-1\}), f^{-1}([1,2])$.
- 2. Is f injective ? is f surjective ?

B. Let the map $g : \mathbb{R} \setminus \left\{\frac{1}{2}\right\} \to \mathbb{R}^{\star}$ such that $: g(x) = \frac{9}{2x-1}$.

- 1. Show that g is a bijection. Determine its inverse function g^{-1} .
- 2. Determine $g^{-1}([-5,2])$.

Exercise 7 Let \mathcal{R} be the binary relation defined in \mathbb{R} by :

 $\forall x \in \mathbb{R}, \quad x\mathcal{R}y \Leftrightarrow x^2 - y^2 = x - y.$

- 1. Show that \mathcal{R} is an equivalence relation.
- 2. Calculate the equivalence class of an element x of \mathbb{R} .
- 3. Determine the equivalence class of 0, deduce that of 1.

Exercise 8 On \mathbb{R}^2 , let \prec be the relation given by

$$\forall (x,y), (x',y') \in \mathbb{R}^2, \quad (x,y) \prec (x',y') \Leftrightarrow \left[(x < x') \text{ or } (x = x' \quad and \quad y \le y') \right].$$

- 1. Show that \prec is a total order relation on \mathbb{R}^2 .
- 2. Classify the following elements in ascending order for the relation \prec :

(-1,1), (-1,-1), (1,-1) and (0,0).

Additional exercises

Exercise 1 Let E be a non-empty set. Show that :

- 1. What about A and B such that $A \cup B = A \cap B$?
- 2. $\forall A, B \in P(E) : A \cup B = A \cap B \Rightarrow A = B.$
- 3. $\forall A, B, C \in P(E) : (A \cap B = A \cap C \text{ and } A \cup B = A \cup C) \Rightarrow B = C.$
- 4. $\forall A, B, C \in P(E) : A (B \cup C) = (A B) \cap (A C).$

Exercise 2 What is the image of the sets : \mathbb{R} , $[0, 2\pi]$, $[0, \pi/2]$, and the inverse image of the sets : [0, 1], [3, 4], [1, 2] by the application $x \mapsto \sin x$.

Exercise 3 Let $f : \mathbb{R}^2 \to \mathbb{R}$, defined by f((x,y)) = 2x - y.

- 1. Determine $f^{-1}(\{1\})$ and represent it graphically.
- 2. Is f injective?
- 3. Show that f is surjective.