Algebra tutorial series 1

Reminder

Recall that $(E, +, \cdot)$ is a \mathbb{R} -vector space if

- 1. (E, +) is an abelian group,
- 2. (a) $\forall x, y \in E, \ \forall \alpha \in \mathbb{R}, \ \alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y,$
 - **(b)** $\forall x \in E, \ \forall \alpha, \beta \in \mathbb{R}, \ (\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x,$
 - (c) $\forall x \in E, \ \forall \alpha, \beta \in \mathbb{R}, \ \alpha \cdot (\beta \cdot x) = (\alpha \beta) \cdot x,$
 - (d) $1 \cdot x = x$.

Exercise 1 Show that the sets below are vector spaces (on \mathbb{R}):

 $-E_1 = \mathbb{R}^2$ with addition "+" and multiplication "\cdot" by a real number, defined by:

$$\forall (x,y), (x',y') \in \mathbb{R}^2, \quad \forall \alpha \in \mathbb{R}, \quad (x,y) + (x',y') = (x+x',y+y'), \quad \alpha \cdot (x,y) = (\alpha x, \alpha y).$$

- $E_2 = \{P \in \mathbb{R}_2 [X] / degP \leq 2\}$ the set of polynomials of degree less than or equal to 2, with coefficients in \mathbb{R} , with addition P + Q of polynomials and multiplication by a real number $\lambda \cdot P$. $\forall P, Q \in E$, $P = aX^2 + bX + c$, $Q = a'X^2 + b'X + c'$, $P + Q = (a + a')X^2 + (b + b')X + (c + c')$. and $\forall \alpha \in \mathbb{R}$ $\alpha \cdot P = (\alpha \cdot a)X^2 + (\alpha \cdot b)X + (\alpha \cdot c)$.
- $-E_3 = \{(u_n) : \mathbb{N} \longrightarrow \mathbb{R}\}\$: the set of real sequences with the addition of the sequences defined by $(u_n) + (v_n) = (u_n + v_n)$ and the multiplication by a réel number $\lambda \cdot (u_n) = (\lambda \times u_n)$
- $E_4 = \{f : [0,1] \longrightarrow \mathbb{R}\}\$: the set of real-valued functions defined on the interval [0,1], with addition of the functions f + g and multiplication by a real number $\lambda \cdot f$.

Exercise 2 Study in which cases \mathbb{R}^2 is a vector space on \mathbb{R} for the laws noted respectively \oplus and \otimes :

1. $\forall (x,y), (s,t) \in \mathbb{R}^2, \forall \alpha \in \mathbb{R}$

$$(x,y) \oplus (s,t) = (x+y,s+t); \quad \alpha \otimes (x,y) = (\alpha x, \alpha y).$$

2. $\forall (x,y), (s,t) \in \mathbb{R}^2, \forall \alpha \in \mathbb{R}$

$$(x,y) \oplus (s,t) = (x+s,y+t); \quad \alpha \otimes (x,y) = (\alpha x,0).$$

3. $\forall (x,y), (s,t) \in \mathbb{R}^2, \forall \alpha \in \mathbb{R}$

$$(x,y) \oplus (s,t) = (x.s,y.t); \quad \alpha \otimes (x,y) = (\alpha x, \alpha y).$$

Exercise 3 In each of the following cases, say whether E_i is a subspace of E.

1. $E = \mathbb{R}^2$.

$$E_{1} = \{(x,y) \in \mathbb{R}^{2} / x + y = 1\}, \quad E_{2} = \{(x,y) \in \mathbb{R}^{2} / 2x + 3y = 0\},$$

$$E_{3} = \{(x,y) \in \mathbb{R}^{2} / xy \leq 0\}, \quad E_{4} = \{(x,y) \in \mathbb{R}^{2} / x \leq y\}$$

$$E_{5} = \{(2x,3x)/ x \in \mathbb{R}\}$$

2. $E = \mathcal{C}(\mathbb{R}, \mathbb{R})$,

$$E_1 = \{ f \in E / f(1) = f(0) \}, \quad E_2 = \{ f \in E / f(1) - 2f(0) = 0 \},$$

3. $E = \mathbb{R}_2[X] = \{P = aX^2 + bX + c \mid a, b, c \in \mathbb{R}\}$

$$E_1 = \{ P \in E \ / \ P'(0) = 2 \}, \quad E_2 = \{ P \in E \ / \ P'(x) \ge 0, \ \forall x \in \mathbb{R} \}.$$

2. Vector families

Exercise 4 Specify whether the following vectors $\{e_1, \dots\}$ form a free or generating family. Express, if possible, the vector a as a linear combination of the vectors e_1, e_2, e_3 of E, in each of the following cases

1.
$$E = \mathbb{R}, e_1 = 3$$
.

2.
$$E = \mathbb{R}^2$$
, $e_1 = (1, 1)$, $e_2 = (-1, 2)$, $e_3 = (1, 0)$, $a = (2, 4)$.

3.
$$E = \mathbb{R}^2$$
, $e_1 = (1, 1)$, $e_2 = (-1, -1)$, $e_3 = (2, 2)$, $a = (1, 0)$.

4.
$$E = \mathbb{R}^3, e_1 = (1, 1, 0), e_2 = (1, 0, 1), e_3 = (0, 1, 1), \quad a = (1, 1, 1).$$

5.
$$E = \mathbb{R}_2[X], e_1 = 1 + 3X, e_2 = X^2 - X, e_3 = X^2 + 1, \quad a = X^2 + X + 1, \quad a = X^3.$$

6.
$$E = \mathcal{C}(\mathbb{R}, \mathbb{R}), e_1 : x \mapsto x, \quad e_2 : x \mapsto \cos x, \quad e_3 : x \mapsto \sin x. \quad a : x \mapsto \cos^2 x.$$

Exercise 5 In the vector space \mathbb{R}^3 , we consider the two families of vectors:

$$A = \{v_1(2, 0, -1), v_2(3, 2, -4)\}, \text{ and } B = \{w_1(1, 2, -3), w_2(0, 4, -5)\}.$$

— Show that span(A) = span(B)

Exercise 6 In the vector space \mathbb{R}^4 , we consider the vectors

$$v_1 = (1, 1, 1, 1), v_2 = (0, 1, 2, 1), v_3 = (1, 0, -2, 3)etv_4 = (1, 1, 2, -2).$$

- 1. Determine the rank of the family $A = \{v_1, v_2, v_3, v_4\}$. Is the set A free?
- 2. Determine real numbers α and β so that the vector $u = (1, 1, \alpha, \beta) \in span(A)$.