Développement d’applications mobiles ~ Travaux pratique 2

1
U sous Android M2-1SI
o Nov 2023

Create a new Android project

Create a project
1. Launch IntelliJ IDEA. On the Welcome screen, click New Project. If you already
have a project open, from the main menu select File | New | Project.
2. Inthe New Project wizard, select Android on the left.

If you don't have the Android SDK configured, IntelliJ IDEA will detect this and
prompt you to download it:

| NON) New Project

Q

New Frolect 0 Configure Android SDK
Empty Project

Generators

& Java Enterprise

In order to create Android project, you need to have Android SDK installed.

Spring Initializr Install SDK
= JavaFX

[¥) Quarkus
Micronaut
@ Ktor
Kotlin Multiplatform
© Compose Multiplatform
B HTML
React
ex Express
Y Angular CLI
IDE Plugin

Maven Archetype

? Cancel Next

3. Select the components you want to install. If you haven't installed the Android SDK
tools before, all the required components will be preselected.

Optionally, modify the location for the Android SDK, and click Next:

(] SDK Setup

SDK Components Setup

Check the components you want to update/install. Click Next to continue.

¥ Android SDK - (318 MB)
Android SDK Platform
API 32 - (120 MB)

Android SDK Location:

{Users/User/Library/Android/sdk

The collection of Android platform APIs, tools and
utilities that enables you to debug, profile, and
compile your apps.

The setup wizard will update your current Android
SDK installation (if necessary) or install a new
version.

Total download size: 318 MB
668 GB

An existing Android SDK was detected. The setup wizard will only download missing or outdated SDK

components.

Cancel Previous Finish

4. Review the installation settings and click Finish to start the download:

[] [] SDK Setup

Verify Settings

If you want to review or change any of your installation settings, click Previous.

Current Settings:

Setup Type:

Standard

SDK Folder:
[Users/User/Library/Android/sdk
Total Download Size:

318 MB

SDK Components to Download:

Android Emulator 318 MB

Cancel Previous Next

5. When all components have been downloaded and installed, click Finish:

(] (] SDK Setup

Downloading Components

Pfeparing "Install Android Emulator (revision: 31.3.5)".

Downloading https://dl.google.com/android/repository/emulator-darwin_x64-8275449.zip
"Install Android Emulator (revision: 31.3.5)" ready.

Installing Android Emulator in /Users/User/

Library/Android/sdk/emulator

"Install Android Emulator (revision: 31.3.5)" complete.

"Install Android Emulator (revision: 31.3.5)" finished.

Cancel Previous Next

6. Select Empty Activity as the project template:

7.

Q
QO

New Project

Empty Project

Generators

4 Java Enterprise

© Spring Initializr Templates
= JavaFX
Phone and Tablet
[®] Quarkus
Wear OS
JL Micronaut
% Ktor Android TV
[Kotlin Multiplatform Automotive

© Compose Multiplatform
B HTML
React
€X Express
Y Angular CLI
IDE Plugin

Maven Archetype

? Cancel

New Project

0 Select a Project Template

cmamy
v
!)
' '
LIS
No Activity Basic Activity Bottom N

Fullscreen Activity Google AdMob Ads Activity Google

a B
Previous

On the last step, type Hel1oDroid as the project name and select Java as the

language:

[] [] New Project

Jo)

New Project

0 Configure Your Project
Empty Project

Generators

&' Java Enterprise

@ Spring Initializr Basic Activity
= JavaFX
7 Creates a new basic activity with the Navigation component
#| Quarkus
[L Micronaut Name HelloDroid
@ Ktor

Kotlin Multiplatform Package name com.example.hellodroid

C Multiplatfi
© Compose Multiplatform Save location | [Users/User/IntelliJIDEAProjects/HelloDroid

B HTML
React Language Java v
eX Express
O Angular CLI Minimum SDK | API 21: Android 5.0 (Lollipop) v
ngular
IDE Plugin © Your app will run on approximately 98.0% of devices.

Help me choose

Maven Archetype Use legacy android.support libraries?

Using legacy android.support libraries will prevent you from using
the latest Play Services and Jetpack libraries

? Cancel Previous

Configure project JDK

Now that we have created our first project, let's make sure it uses the correct JDK.
1. Go to File | Project Structure and go to Platform Settings | SDKs. Select the Android
SDK and make sure that the correct Java version is selected in the Java SDK field.

| NON | Project Structure

« + -
1 Name: Android API 29 Platform
Project Settings 104
Project - 11'0'5 Android SDK home path: [Users/ JLibrary/Android/sdk
Modules - 1 4 '
L - Build target: = Android API 29 v
Libraries =14 (EA)
Facets Android API 29 Platform Java SDK: 1 v
Artifacts < corretto-11 ol b - i 5 o path
IDE Aj dk asspat ourcepat nnotations ocumentation Paths

Platform Settings = , . . o
Kotlin SDK - /Users/ JLibrary/Android/sdk/platforms/android-29/android.jar
oo L

[Users/ I ibrary/Android/sdk/platforms/android-29/datafres

Global Libraries

Problems

? Cancel Apply “

We recommend that you use Java SE 11 or Java SE 8 for Android development in
IntelliJ IDEA. If you don't have the correct JDK installed, in the Project
Structure dialog, click the Add New SDK button + on the toolbar and

select Download JDK:

Download JDK...

-+ Add JDK...
+. Add IntelliJ Platform Plugin SDK...
Add Android SDK...
Detected SDKs
-+ /Library/Java/JavaVirtualMachines/jdk-14.0.1.jdk java version "14.0.1"

In the Settings dialog (CtrlAlt0S), go to Build, Execution, Deployment | Build Tools |
Gradle and select the correct Java version (8.x or 11.x).

U

Build, Execution, Deployment * Build Tools * Gradle

> Appearance & Behavior General settings
Keymap Gradle user home:
> Editor
Plugins

> Version Control

~ Build, Execution, Deployment

~ Build Tools

> Maven

Preferences

[Users/

For current project

/.gradle

Override the default location where Gradle stores downloaded files, e.g. to tune anti-virus software on Windows

Generate *iml files for modules imported from Gradle
Enable if you have a mixed project with IntelliJ IDEA modules and Gradle modules so that it could be shared via VCS

Gradle projects

HelloDroid Download external annotations for dependencies

Gant

Compiler

v

Debugger

Remote Jar Repositories

~

Deployment

Arquillian Containers

~

Android

Application Servers

Coverage

~

Docker

Gradle-Android Compiler

~

Java Profiler
Required Plugins

> Languages & Frameworks

> Tools

Build and run

By default IntelliJ IDEA uses Gradle to build the project and run the tasks.

In a pure Java/Kotlin project, building and running by means of the IDE might be faster, thanks to optimizations. Note,
that the IDE doesn't support all Gradle plugins and the project might not be built correctly with some of them.

Build and run using:
Run tests using:
Gradle

Use Gradle from:

Gradle JVM:

Explore the project structure

For Android projects, there's a dedicated view in the IntelliJ IDEA Project tool window:

click Project in the top-left corner and select Android.

W' 1: Project

7: Structure

o> Resource Manager

= HelloDroid

Project «
Project
Packages
Project Files
Production
4 Tests
Problems
Open Files

© Scratches and Consoles

icts/HelloDroid

>
>

= gradlew.bat
L1local.properties
settings.gradle
Il External Libraries

© Scratches and Consoles

Gradle (Default) v
Gradle (Default) v
'gradle-wrapper.properties' file v

e 11.0.4 java version "11.0.4"

Cancel

Apply

This view doesn't reflect the actual hierarchy of files on your disk — it is organized by
modules and file types to ease navigation between source files of your project. Note that it
hides project files and directories that you don't commonly use (to see them, choose

the Project view):

HelloDroid app

‘g Android « D - & —
=)
: T
-l
]

v manifests
w AndroidManifest.xml

e v java
'g > com.example.hellodroid
z"_r:g > com.example.hellodroid (androidTest)
: > com.example.hellodroid (test)
v res

> drawable

> layout

> mipmap

> values

> % Gradle Scripts

%> Resource Manager

The app folder consists of the following subfolders:

o manifests: contains the AndroidManifest.xml file, which holds general information
about the application processed by the Android operating system. Among other things,
it declares the package name that serves as a unique identifier for your application and
the minimum version of the Android SDK required for the device where the
application will run. It also declares the entry points of the application, along with
permissions the application requires. For more information, refer to App Manifest
Overview.

e java: contains the Java source code files grouped by packages, including JUnit tests.

e res: contains all non-code resources, such as XML layout files, Ul strings, images, and
SO on.

The Gradle Scripts folder contains all the project's build-related configuration files.

Edit the Ul layout

At this stage, the user interface of our sample Hel1loDroid application is based on a very
simple layout defined inthe activity main.xml file located in the res/layout folder.

let's modify the auto-generated user interface and see how the application layout is rendered
without running it on any physical or virtual device.

Open the Ul designer
1. Inthe Android project view, go to the app/res/layout and double-click
the activity main.xml file to open it. Note that since IntelliJ IDEA downloads
the components required to render layout files, opening it may take a few seconds.

https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro

If the Ul designer fails to open, and you get the Design editor is unavailable until
after a successful project sync error, press CtriShift0A, search for the sync
Project with Gradle Files action, and wait for the sync to finish.

By default, IntelliJ IDEA provides a graphical view of the layout file, but you can also

switch to the source code view, or view the text and the graphical representation side
by side — use the icons in the top-right corner of the Ul Designer pane:

< activity_main.xml|

Palette € & 0OPixelv 29+~ (©AppTheme ~ & Default (en-us) ~ O Attributes
Common TextView @ ¥ (0dp, % 4 I <unnamed>
Text Button i
o ImageView
ons Recycler... > Declared Attributes
Widgets
9 <fragme... ~ Layout
Layouts ScrollView .
. layout_width match_parent
Containers Switch
layout_height match_parent
Google
visibility
Legacy
F visibility

v Common Attributes

minWidth
maxWidth
minHeight
Component Tree ——
ConstraintLayout
TextView “Hello World!"

alpha

> All Attributes

This pane shows a rectangular canvas that is synchronized with the layout definition
and with the Component Tree, so any changes to the canvas are reflected there
accordingly.

Normally, layout files have a layout manager as their root element (for

example, LinearLayout, FrameLayout, ConstraintLayout, and so on). In
our example, the root element in activity_main.xml is ConstraintLayout that is
responsible for positioning the elements of the application interface. For the purpose
of this tutorial, we are not going to modify it, but you can learn more about designing
interfaces from Build a Responsive Ul with ConstraintLayout.

To eliminate distraction and only see how your layout is represented, click the Select
Design Surface icon in the top-left corner and choose Design:

https://developer.android.com/training/constraint-layout

€® O 0OPixelXL 29 v (© NoActionBar
v/ Design

Blueprint
Design + Blueprint

Force Refresh Layout R
3. Now let's delete the existing text element. To do this, right-click the text label and
choose Delete from the context menu.

Now the Ul layout looks like the following, and we are ready to start designing the layout of
our application:

s activity_main.xml

= Code :=M Split B Design

Palette € Q& 0OPrixel 29~ (© AppTheme » @ Atributes
Common TextView © ¥ 0dp, J% 4 I <unnamed>
Text Button i
o ImageView
utons Recycler... > Declared Attributes + -
Widgets <fragme... v Layout
Layouts ScrollView .
A . layout_width match_parent v
Containers Switch
layout_height match_parent v
Google
visibility v
Legacy
visibility v

v Common Attributes

———— minWidtihy
Component Tree maxWidth
ConstraintLayout minHeight
maxHeight
alpha

v All Attributes
J actionBarNavMode v
addStatesFromC...
alpha
alwaysDrawnWit...
: animateLayoutCh...
V7

animationCache

SOoO00 D

background

Add image to the Ul layout

Now let's add a droid image to our layout.

1. Inthe Android project view, expand the app/res folder and drag the image you
want to use into the drawab1e folder. For this tutorial, we've downloaded a Hello
Droid image from the Internet and saved it with the dimensions 50x50 px.

2. Returntothe activity main.xml file opened in the Designer pane, from
the Palette choose the ImageView element, and drag it to the canvas to the position
where you want the image to appear.

3. Inthe Pick a Resource dialog that opens, choose the resource file you've added and
click OK:

Androld - B = @ — & ectivitmainxml

¥ leapp =Code 8Spit [EIDesign
jr:::mts Palatte #® &3 OPixel 29~ (© AppTheme 0 Atributes
res Commaon TextView @ 0o, i 4 I8 = I imageview
drawable Taxt Button : - imagaview
helledroid.prg R ImageView :
s Ic_launcher_background.xml Recycler... > Declared Attributes + -
am lc_launcher_foreground.xml (v24 bl =fragme... * Layout
layout . Scr.aIIView ——a Constraint Widget
mipmag Containers Switch H
values Google Ofe oY
» @ Gradle Scripts e =54 L+
Component Tree ‘}
ConstraintLayout
— - Constraints
layout_width wrap_content +
4 layout_height wrap_content S
wvisibility -
* # visibility -

Common Attributes
srcCompat M wablefhellodroid | |

4. Next, we need to modify the default id of the imageVview element to be able to
reference it later.

Select it in the Component Tree and in the Attributes pane on the right, enter the
new identifier in the id field: droidImage. Press Enter; in the dialog that opens,
confirm that you want to update all references to the image element id:

@ Update Usages of imageView

Update all usages of imageView as well?
This will update all XML references and Java R field references.

Don't ask again during this session

No (local only) Preview Cancel Yes

Add text to the Ul layout

Now let's add some text to our layout.
1. Inthe Palette pane, pick the TextView element and drag it to the canvas below the
image.
The widget displays some default text: TextView. To change it and link it to a string,
we need to create a new text resource.

2. Select the textView element in the Component Tree on the left. In the Attributes pane
on the right, click the Pick a Resource icon next to the text attribute:

2 activity_main.xml

= Code =N Split B Design

Palette ® & OPixelv =29+ (@©AppTheme v » Attributes
Common TextView (0] ™ 0dp, JX # :% |'_v : textView
Text Button > Declared Attributes T o=
ImageView
Buttons > Layout
Recycler...
Widgets <fragme... Common Attributes Pick a Resource
L t i 5
ayouts ScrollView text TextView
Containers Switch it
Google & -
contentDescription
Legacy T) » textAppearance | @android:style/Te | v
Q alpha
< v >
v All Attributes
alpha
Component Tree
> autoLink [
ConstraintLayout)
.) autoSizeMaxTe...
imageView
textView ‘TextView" autoSizeMinTex...
autoSizePresetS...
“ autoSizeStepGr...
autoSizeTextType v
autoText =
background Vd
] bufferType v
/
Vi capitalize v
clickable 2
= Logcat = TODO 8¢ Event Log D Database Inspector g Layout Inspector

3. Inthe dialog that opens, click the Add resource to the module icon + in the top left
corner and choose String Value.

4. Inthe New String Value dialog, enter the resource name (welcome text)and the
resource value (Hello! I'm a droid.):

[JON J New String Value

Resource name: welcome_text
Resource value: | Hello! I'm a droid.
Source set: main v

File name: strings.xml v

Create the resource in directories:
values

+ ¥ o

Cancel

5. Click OK to save the value and then click OK in the Pick a Resource dialog.
6. Now let's modify the textVview element id the same way we did with imageVview.

Select textView in the Component Tree on the left, and in the Attributes pane set
the id to a new value: clickCounter.

Add style to text

Now let's add some style to the text to make it look more appealing.
1. Pad the text a bit: locate the padding attribute, and set all values to 10dp:

Attributes
textView
onClick v
orientation -

overScrollMode v

~ padding [10dp, 10dp, 10dp, 10dp, 10dp]
padding 10dp
paddingLeft 10dp
paddingTop 10dp
paddingRight 10dp
s

2. Change the font color: locate the textColor attribute, and click the Pick a
Resource icon next to it.

In the dialog that opens, click the Add resource to the module icon + in the top left
corner and choose Color Value.

Enter the resource name (text color) and the value (#9C27B0):

® 0 New Color Value
Resource name: | text_color
Resource value: |[ll #9c27B0|
Source set: main v

File name: colors.xml v

Create the resource in directories:

values

Cancel

3. Change the font size: locate the TextSize property and click the Pick a
Resource icon next to it

In the dialog that opens, click the Add resource to the module icon + in the top left
corner and choose Dimension Value.

Enter the resource name (text size) and the value (24sp):

As a result, your user interface now looks like the following:

® @® New Dimension Value

Resource name: text_size

Resource value: | 24sg|

Source set: main v
File name: dimens.xml v

Create the resource in directories:

values

+ ¥ B

Cancel

&5, activity_main.xml

Palette

Common
Text
Buttons
Widgets
Layouts
Containers
Google

Legacy

Component Tree

ConstraintLayout
droidlmage
clickCounter "@string/welc...

= Logcat

Q Q O Pixel ~
@ © (0dp, S /

TextView

29+ (© AppTheme ~

<

= Code
Attributes

<unnamed>

Button
ImageView
Recycler...
<fragme...
ScrollView
Switch

i

Hello! I'm a droid

id
> Declared Attributes

> Layout

v Common Attributes

minWidth
maxWidth
minHeight
maxHeight
alpha
v All Attributes
/# actionBarNavM...
addStatesFrom...
alpha
alwaysDrawnWi...
“ animateLayoutC...
animationCache
background
clickable

clipChildren

O0ooS000 O

clipToPadding

contentDescript...

i= TODO

9+ Event Log [Database Inspector

=0 Split B Design

I Layout Inspector

To check what your application Ul looks like in landscape orientation, click the Orientation

N
for Preview icon © on the Designer toolbar and choose Landscape:

€ Q& 0OPixel v 29 v (© AppTheme -

@ v Portrait

mmm Londscape
Ul Mode >
Night Mode > |

Create Landscape Variation
Create Tablet Variation
Create Other...

To preview what your layout looks like on different devices, select another device from the
device list:

s activity_main.xml

Palette ® & [ONexus5X~ 29~ (@©NoActionBar~ & Default (en-us) -
Common TextView (o3 i C Phone Device for Preview (D)
Text Button 5.0, 1080 x 1920, 420dpi (Pixel)
suttons ImageView 5.0, 1080 x 1920, 420dpi (Pixel 2)
_ Recycler... v 5.2,1080 x 1920, 420dpi (Nexus 5X)
Widgets <fragme... 55,1080 x 2160, 440dpi (Pixel 3)
—ERli ScrollView 5.5, 1440 x 2560, 560dpi (Pixel XL)
Containers Switch 5.6, 1080 x 2220, 440dpi (Pixel 3a)
Google 5.7,1440 x 2560, 560dpi (Nexus 6P)
Legacy 6.0, 1440 x 2560, 560dpi (Nexus 6)

6.0, 1440 x 2880, 560dpi (Pixel 2 XL)

6.0, 1080 x 2160, 400dpi (Pixel 3a XL)
6.3, 1440 x 2960, 560dpi (Pixel 3 XL)

Tablet

7.0, 800 x 1280, tvdpi (Nexus 7 2012)

7.0, 1200 x 1920, xhdpi (Nexus 7)

8.9, 2048 x 1536, xhdpi (Nexus 9)

Component Tree

e 9.9, 2560 x 1800, xhdpi (Pixel C)
imageViewZ 10.1, 2560 x 1600, xhdpi (Nexus 10)
textView "@string/WelcomT

Wear

280 x 280, hdpi (Square)
320 x 320, hdpi (Round)
320 x 290, tvdpi (Round Chin)
TV K
1080p, 1920 x 1080, xhdpi (TV)
720p, 1280 x 720, tvdpi (TV)
Automotive
8.4,1024 x 768, mdpi (Automotive 1024p landscape) "
Polestar 2 (11562 x 1536, mdpi)
Custom

i= 6: TODO Generic Phones and Tablets >
Add Device Definition...

Make the application interactive

Although our sample application is fully functional at this point, it does not support any form
of interaction yet. Let's modify it to support tap events.

1. Inthe Android project view, locate the MainActivity file
under app\java\com.example.hellodroid and double-click to open it.
2. MainActivity is not a very meaningful class name, so let's rename it.

Right-click this file in the Android project view and choose Refactor | Rename from
the context menu or press ShiftFé. In the dialog that opens, change the class
name HelloDroidActivity and click Refactor:

[) ® Rename

Rename class 'com.example.hellodroid.HelloDroid' and its usages to:
HelloDroidActivity v

Search in comments and strings Search for text occurrences
Rename tests Rename inheritors

Rename variables

Scope

Project Files v

? Cancel Preview

All references to this class will be updated automatically, and your application’s
source code will look as follows:

¥
»«

Android ¥ o — o activitymainxml C HelloDroidActivity.java

v app package com.example.hellodroid;

W 1: Project

> manifests
v [java import ...
v com.example.hellodroid
HelloDroidActivity public class HelloDroidActivity extends AppCompatActivity {
> com.example.hellodroid (androidTest)
> com.example.hellodroid (test) @0verride
? java (generated) of protected void onCreate(Bundle savedInstanceState) {
> res
> @ Gradle Scripts

7: Structure

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

}
3. Replace the code in HelloDroid.java with the following:

o> Resource Manager

package com.example.hellodroid

import android.os.Bundle
import android.view.View
import android.widget.ImageView

import android.widget.TextView

import androidx.appcompat.app.AppCompatActivity;

public class HelloDroidActivity extends AppCompatActivity {
private TextView message;

private int counter = 9;

@0verride
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.activity main);

message = findViewById(R.id.clickCounter);
ImageView droid = findViewById(R.id.droidImage);

//Define and attach click listener
droid.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {

tapDroid();

1)

private void tapDroid() {
counter++;
String countAsText;
/*

* In real applications you should not write switch like the one

below.
* Use resource of type "Quantity strings (plurals)" instead.
* See https://developer.android.com/guide/topics/resources/string-
resource#Plurals
*/
switch (counter) {
case 1:
countAsText = "once";
break;
case 2:
countAsText = "twice";

break
default:

countAsText = String.format("%d times", counter

message.setText(String.format("You touched the droid %s"

countAsText

Note that the identifiers we've used in the source code correspond to those we've set in
our layout definition file, otherwise our code would not work.

Build and run the application

Now let's build our application and run it on a virtual device.
Configure Android virtual device

First of all, to be able to run our application, we need to configure a virtual device.
1. In the main IntelliJ IDEA toolbar, click the device list and choose AVD Manager:

12 HelloDroid.app ¥ No Devices v = v (A
Run on Multiple Devices

= AVD Manager

2. On the first step of the wizard, click Create Virtual Device:

ec e Android Virtual Device Manager

Do I mE

Virtual devices allow you to test your application without
having to own the physical devices.

+ Create Virtual Device...

To prioritize which devices to test your application on,
visit the Android Dashboards, where you can get
up-to-date information on which devices are active in the
Android and Google Play ecosystem.

3. On the next step, we need to select the hardware that our virtual device will emulate.

Let's select Phone on the left, and choose Pixel 2 as the target device:

® O Virtual Device Configuration

’_,(v Select Hardware

Choose a device definition

Q-

[Pixel 2
Category Name v Play Store Size Resolution Density
v % " i
Pixel 3a XL 6.0 1080x2... 400dpi 1080px
Phone Size: |
- Pixel 3a » 56 1080x2... 440dpi Rl g
Wear OS . . Density: 420dpi
Pixel 3 XL 6.3" 1440x2... 560dpi 5.0" 1920px
Tablet . X
Pixel 3 B 5.46" 1080x2... 440dpi
Automotive
Pixel 2 XL 9" 1440x2... 560dpi
--
Pixel 0" 1080x1... 420dpi
New Hardware Profile Import Hardware Profiles S Clone Device...

? Cancel Previous Finish

4. Choose the system image you want to mimic on the virtual device, that is the OS
version, the Android API level, the application binary interface (ABI), and the target
SDK version:

System Image

Virtual Device Canfiguration

Select a system image

Recommended x86 Images Other Images

Release Name APl Level ¥
R Download 30
@ Download 29
Pie Download 28
Oreo Download 27
Oreo Download 26
Nougat Download 25
Nougat Download 24

AB|
x86
x86
x86
x86
x86
x86
x86

© A system image must be selected to continue.

Target

Android 10.0+ (Google Play)
Android 10.0 (Google Play)
Android 9.0 (Google Play)
Android 8.1 (Google Play)
Android 8.0 (Google Play)
Android 7.1.1 (Google Play)
Android 7.0 (Google Play)

%]

APl Level

30

Android
10.0+
Google Inc.

System Image
x86

We recommend these Google Play images because
this device is compatible with Goagle Play.

Questions on API level?
See the API level distribution chart

Cancel Previous Next Finish

5. Click the Download link next to the system image you want to mimic on the virtual
device. For this tutorial, we've chosen to download the R system image.

In the License Agreement dialog that opens, read the license agreement and accept it,
then click Next and wait for the download to finish. When the system image has been
downloaded, select it and click Next in the System Image step of the wizard.

6. On the last step, you can modify your virtual device name and select the startup size
and orientation of the screen. Choose the portrait layout and click Finish:

[JON | Virtual Device Configuration

Android Virtual Device (AVD)

Verify Configuration

AVD Name Pixel 2 API 30 Default Orientation

E‘D Pixel 2 5.01080x1520 xxhapl Change... Sets the initial orientation of the device. During AVD emulation
you can also rotate the device screen.
& R Android 10.0+ x86 Change...

Startup orientation E

Portrait Landscape

Emulated

Performance Graphics: Automatic

Show Advanced Settings

? Cancel Previous Next

7. The newly configured device appears in the Android Virtual Device Manager.
Run the application

1. On the main IntelliJ IDEA toolbar, make sure the automatically created Run

configuration and the virtual device we've just configured are selected and click

A, | HelloDroid.app | Pixel 2 API 30 ¥ [L Pixel 2API30 v | P & -~ (7

Run 'HelloDroid.app' <F10

The Android emulator will launch after the build has successfully finished, with our
application started:

https://www.jetbrains.com/help/idea/run-debug-configuration.html
https://www.jetbrains.com/help/idea/run-debug-configuration.html

429 & ©

HelloDroid

Hello! I'm a droid

2. Click the droid image and see how the application processes the tap events, counts
them and returns the corresponding message:

430 & ©

HelloDroid

You touched the droid 3 times

