
Mr A.Dekhinet

University of BATNA 2 / Computer Science Department

a.dekhinet@univ-batna2.dz

http://staff.univ-batna2.dz/dekhinet-abdelhamid

Chapter 5

dApp : Solidity language

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

2

Introduction

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

 Solidity is a high-level language to write smart contracts for

Ethereum.

 Influenced by C++, Python, and JavaScript.

 Smart contracts can be defined as encapsulated units, similar

to classes in object-oriented languages.

 Supports multiple inheritance.

 Supports function overloading.

 Supports import statements to help modularize your code.

 Statically-typed language, which means that the data type of

each variable needs to be specified.

 Other languages for smart contracts : Go, Python, JS, Vyper,

LLL, Serpent, Bamboo, …

3

Introduction

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

 A smart contract has its own, persistent state on the

blockchain which is defined by state variables in the

contract.

 Functions are used to change the state of the smart

contract or to perform other computations.

 Solidity is compiled to bytecode which is persistent

and immutable once deployed to the blockchain.

 Solidity code is stored in files with extension .sol .

 A good practice is to have one separate .sol file per

contract.

4

Introduction

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

 The Solidity compiler takes a .sol file as input and generates

the corresponding sequence of EVM opcode instructions

and an ABI.

 ABI (Application Binary Interface) : JSON file that can be

used by other applications to interact with smart contract.

 The opcode instructions are then encoded as hex bytecode.

 The contract is deployed via a special transaction

containing the bytecode as payload.

 Once the transaction is mined, a new contract account on

the Ethereum network is created.

 The contract is now usable.

5

Solidity Smart Contract Deployement

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

6

Solidity Smart Contract Compilation

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

ABI
[

{
"inputs": [],
"name": “greet",
"outputs": [

{
"internalType": "bytes32",
"name": "",
"type": "bytes32"

}
],

"stateMutability": "nonpayable",
"type": "function"

}
]

ByteCode
608060405234801561000f575f80fd5b5060c
e8061001c5f395ff3fe608060405234801560
0e575f80fd5b50600436106026575f3560e01
c8063cfae321714602a575b5f80fd5b603060
44565b604051603b91906081565b604051809
10390f35b5f7f48656c6c6f20776f726c6400
0000000000000000000000000000000000000
000905090565b5f819050919050565b607b81
606b565b82525050565b5f602082019050609
25f8301846074565b9291505056fea2646970
667358221220b6ebb686a38ddf8f82ed0261c
e5f0849a30ff26735b78e15ecd485c49608ec
df64736f6c63430008160033

• // SPDX-License-Identifier: MIT

• pragma solidity ^0.8.17;

• contract Hello {

• function greet() public returns(bytes32)
{

• return "Hello world";

• }

• }

Compile

7

Blockchain for Smart Contract Deployment

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

 Smart contract can be deployed in several blockchains

 Private: e.g., Ganache sets a personal Ethereum blockchain

for running tests, executing commands, and inspecting the

state while controlling how the chain operates.

 Public Test (Testnet): Like Ropsten, Kovan and Rinkeby

which are existing public blockchains used for testing and

which do not use real funds.

 Public Real (Mainnet): Like Bitcoin and Ethereum which

are used for real and available to join.

8

Anatomy of Smart Contract

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

pragma solidity ^0.4.17;
contract SimpleDeposit {

address owner;
mapping (address => uint) balances;
uint public feed; /* A getter method is automatically created */

event LogDepositMade(address from, uint amount);

constructor() public {
owner = msg.sender;

}

modifier minAmount(uint amount) {
require(msg.value >= amount);
_;

}

function SimpleDeposit() public payable {
balances[msg.sender] = msg.value;

}

function deposit() public payable minAmount(1 ether) {
balances[msg.sender] += msg.value;
LogDepositMade(msg.sender, msg.value);

}

function getBalance() public view returns (uint balance) {
return balances[msg.sender];

}

function withdraw(uint amount) public {
require(owner=msg.sender);
if (balances[msg.sender] >= amount) {
balances[msg.sender] -= amount;
msg.sender.transfer(amount);

}
}

Smart contract can contains
declarations of :

State Variables

Struct Types

Enum Types

Import statement

Functions

Function Modifiers

Function Constructor

Events

Errors

Comments

Etc ...

And solidity file can be composed of
four high-level construct :

SPDX license identifier

Pragma

Comments

Import

Contracts/Library/Interface

9

Data type

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

 Boolean (bool) : Boolean value, true or false, By default, it is false.

 Integer (int, uint) : Signed (int) and unsigned (uint) integers of various size, declared in increments of 8

bits from int8 to int256 (unsigned of 8 up to 256 bits). Without a size suffix, 256-bit quantities are used,

to match the word size of the EVM.

 Fixed point (fixed, ufixed) : Fixed-point numbers, declared with (u)fixedMxN where M is the size in bits

(increments of 8 up to 256) and N is the number of decimals after the point (up to 18); e.g., ufixed32x2.

N.B : Fixed point numbers are not fully supported by Solidity yet. They can be declared, but cannot be assigned

to or from. In another word, not useful.

 Byte : Fixed-size array of bytes, holds a sequence of bytes from one to up to 32 (bytes1 up to bytes32).

 String : String literals are written with either double or single-quotes. String data type can be

considered as a variable-sized array of bytes. Byte has an advantage that it uses less gas, so better to use

when we know the length of data.

 Array : Array data type can be static (Fixed size) or dynamic (Variable size). The type T of an array of k

element is written as T[k] , and an array of dynamic size as T[] (e.g an array of 5 dynamic arrays of uint

is specified as uint[][5]).

 Enum : User-defined type for enumerating discrete values: enum Name {Label1, Label2, ...}.

 Struct : User-defined data containers for grouping variables, allows users to create and define their own

type in the form of structures : struct Name {Type1 Variable1; Type2 Variable2; ...}.

 Mapping : Mapping is the most used reference type, that stores the data in a key-value pair. It is like a

hashtable or hashmap in Java, where data can be retrieved by key : mapping (Key_Type ⇒ Value_Type)

Variable_Name

 Address : Hold a 20-byte value which represents the size of an Ethereum address. The address object

has many member functions, the main ones being balance (Returns the account balance) and transfer

(Transfers ether to the account).

10

Data types

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

• pragma solidity ^0.8.17;
• contract Data_Types {
•

• bool transferable;
• bytes1 public b = "a";
• string hello = "Hello world";
• bytes32[] public names;
• bytes8[20] city;
• uint32 age;
• uint[5] odds = [1,3,5,7,9];
•

• address payable payor;
• mapping (address => uint) balances;
•

enum season { spring,summer,autunm,winter }
• season public Season;
•

struct Order {
• string buyer;
• string product;
• uint quantity;
• }
• mapping (address => Order) Orders;
• Order ord;
• }

11

Types of variables : Three types of variables

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

 Local variables : Declared within a function and are only accessible within that function. They are not

stored in the Blockchain and their lifetime ends when the function execution is completed. Function

parameters are always local.

 State variables : Declared at the contract level, outside function. They represent the contract’s state on

the blockchain and are accessible within the entire contract. State variables values are permanently

stored in contract storage. Update the state requires a transactions and therefore costs ether.

 Global variables : Are predefined and special variables provided by the Solidity language. When a

contract is executed in the EVM, it has access to a small set of global objects. These include the block,

msg, and tx objects A global variable represents an attribute of an object (block, msg, tx, Address).

Variable scope

Scope of local variables is limited to function in which they are defined but State variables can
have three types of scopes :
Public − Public variables are accessible from within the contract and can be accessed from
external contracts as well. Solidity automatically generates a getter function for public state
variables.
Internal − Internal variables are accessible within the contract they are defined in and derived
from contracts. They are not accessible from external contracts.
Private − Private variables are only accessible within the contract they are defined in. They are
not accessible from derived contracts or external contracts.

Variable Names

Solidity variable names are case-sensitive and should not start with a numeral (0–9).
They must begin with a letter or an underscore character.

12

Global variables

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

 Transaction/message call context : The msg object is the transaction call (EOA

originated) or message call (contract originated) that launched this contract

execution.

 Transaction context : The tx object provides a means of accessing transaction-

related information.

msg.sender (address) : The address that initiated this contract call

msg.value (uint) : The value of ether sent with this call (in wei)

msg.gas (Replaced by Gasleft function) : The amount of gas left of the contract execution

msg.data (bytes) : Complete Calldata of the called function, holds the function identifier and its

parameters values in the form of bytes

msg.sig (bytes4) : The first four bytes of the call data (the function identifier).

tx.gasprice (uint): The gas price in the calling transaction

tx.origin (address): The address of the originating EOA for this transaction.

13

Global variables

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

 Block context : The block object contains information about the current block

 Address object

block.blockhash(blockNumber) (Replaced by blockhash function) : The block hash of the

specified block number, up to 256 blocks in the past.

block.coinbase (address) : The current block miner's address, recipient of the block reward.

block.difficulty (uint) : The difficulty (proof of work) of the current block

block.gaslimit (uint) : The maximum amount of gas that can be spent across all transactions

included in the current block

block.number (uint) : The current block number (blockchain height)

block.timestamp (uint) : The current block timestamp placed by the miner

address.balance (uint): The balance of the address, in wei. For example, the current contract

balance is address(this).balance.

address.transfer(amount) function : Transfers the amount (in wei) to this address, throwing an

exception on any error.

address.send(amount) function : Similar to transfer, only instead of throwing an exception, it

returns false on error.

address.call(payload) : Low-level CALL function

address.callcode(payload) : Low-level CALLCODE function

address.delegatecall() : Low-level DELEGATECALL function

14

Flow control statement

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

 While Loop

 Do …. While Loop

 For Loop

 Loop control : break and continue

 If statement

 If ... else statement

 if...else if... statement

15

Function

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

 Within a contract, we define functions that can be called by an

EOA transaction or another contract.

 Functions are used to change and to read the state of a

contract.

 The syntax we use to declare a function is as follows :

function FunctionName([parameters])
{public|private|internal|external}

[pure|constant|view|payable]
[modifiers]

[returns (return types)]

16

Function visibility

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

 public : Public is the default; such functions can be called by

other contracts or EOA transactions, or from within the

contract.

 external : External functions are like public functions,

except they cannot be called from within the contract

unless explicitly prefixed with the keyword this.

 internal : Internal functions are only accessible from within

the contract ,they cannot be called by another contract or

EOA transaction. They can be called by derived contracts

(Those that inherit this one).

 private : Private functions are like internal functions but

cannot be called by derived contracts

17

Function behavior

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

The set of keywords (pure, constant, view, payable) and other kind of declarations

(fallback, Modifiers, …) affect the behavior of the function :

 view or constant : State read only function, it cannot modify the state variables nor

alter the state of the blockchain. The term constant is an alias for view.

 pur : It cannot read or modify the state variables.

 payable : A payable function is one that can receive incoming payments. Functions

not declared as payable will reject incoming payments.

uint state ; // State variable
function add(uint a, uint b) public pur returns (uint sum) { return a + b }

uint state ; // State variable

function add(uint a, uint b) public view returns (uint sum) { return a + b + state }

function deposit() external payable {
// Payable keyword allows receiving Ether
// Hide Code : address(this).balance += msg.value

}

18

Function Modifier

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

 The function modifier is a special type of function in solidity.

 Modifiers are most often used to create conditions that apply to

many functions within a contract.

 Modifiers are basically a reusable piece of code.

 The syntax of the definition start with the keyword modifier :

modifier FunctionName { ………….}

 Chaining of function modifiers : It is possible to apply multiple

modifiers to a function. The modifiers will be resolved sequentially,

starting from left to right.

modifier isOwner() {
require(msg.sender == owner, "Not the owner");
_; // Actual function code is injected here

}

19

Function Modifier

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

contract Owned {
mapping (address => uint) balances;
address public owner;

constructor() {
owner = msg.sender;

}

modifier onlyOwner {
require(msg.sender == owner);
_;

}

modifier isRich {
require(msg.sender.balance > 1120 ether);
_;

}

function deposit() public payable onlyOwner isRich returns (uint) {
balances[msg.sender] += msg.value;
return balances[msg.sender];

}

}

20

Function Constructor

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

 Constructor is a special function that is only used once.

 When a contract is deployed, it also runs the constructor function, to initialize the state of

the contract : Setting initial values of state variables or performing setup tasks.

 The constructor is run in the same transaction as the contract creation.

 The constructor function is optional, If there is no constructor defined, the default

constructor will be executed automatically.

 We can destroy the contract using Self destruct built-in function

 The function allows you to effectively remove a contract from the blockchain and send its

remaining ether to a designated recipient.

 When a contract is destroyed, storage space is freed up in the blockchain as its code and data

are removed.

contract Owned {
address public owner;
constructor() {

owner = msg.sender;
}

}

selfdestruct(recipientAddress);

21

Function overloading

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

 Solidity supports the overload of functions,

 Multiple definition of the same function with a different signature,

 It can be helpful if a method needs to be adapted to certain situations.

function sendEther(uint amount) {
require(this.balance >= amount);
msg.sender.transfer(amount);

}

function sendEther(uint amount, address to) {
require(this.balance >= amount);
to.transfer(amount);

}

22

Inheritance

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

 Solidity supports multiple inheritance of contracts,

 Solidity uses, similar to Python, the C3 superclass linearization algorithm to define the Method

Resolution Order (MRO or FRO) of the inherited functions,

 The keyword super references the next contract in the FRO : super(F) = D .

 Example : Contracts inheritance and the corresponding graph

contract A {}
contract B {}
contract C {}
contract D is A, B {}
contract E is B, C {}
contract F is D, E {}

23

Inheritance

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

contract A {
function getNumber() returns (uint a) {

return 13;
}

}

contract B is A {
function getNumber() returns (uint a) {

return super.getNumber() + 1;
}

}

contract C is A {
function getNumber() returns (uint a) {

return super.getNumber() + 2;
}

}

contract F is C, B {
function getNumber() returns (uint a) {

return super.getNumber();
}

}

What would happen if
F.getNumber() is called?

The FRO is :

▪ F, C, B, A

▪ In F super will be resolved to C

▪ In C super will point to B

▪ In B super will point to A

The final result is :

13 + 1 + 2 = 16

24

Abstract contract

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

 Solidity supports abstract contracts. A contract is implicitly declared

as abstract, if one or more functions are abstract. A function is

considered abstract when it does not have a body.

 Abstract contracts cannot be compiled to bytecode. A contract that

inherits from an abstract contract must implement and override all

methods from the base contract.

 Abstract contracts offer a way to decouple the definition of a

contract from its actual implementation

contract CarInsurance {
function payMonthlyFee() returns (boolean result);

}

25

Interface

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

 an interface is a special type of contract that defines a set of functions that other

contracts can implement,

 An interface is similar to an abstract class but is more restrictive. It is not allowed

to define a constructor or variables in interface. Furthermore, interfaces cannot

inherit from a contract or implement another interface,

 Interface can inherit from other interfaces

 In interface all declared functions must be external

interface Token {
function transfer(address _to, uint256 _value) external;
function balanceOf(address _owner) external view returns (uint256);

}

contract MyToken is Token {
function transfer(address _to, uint256 _value) external {

// Implement the transfer function here
}

function balanceOf(address _owner) external view returns (uint256) {
// Implement the balanceOf function here

}
}

26

Events : event , emit

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

 Events are a way to log that something has occurred,

 When a transaction completes (successfully or not), it produces a transaction

receipt,

 The transaction receipt contains log entries that provide information about the

actions that occurred during the execution of the transaction,

 Events are the Solidity high-level objects that are used to construct these logs,

 Events are especially useful for light clients and DApp, which can watch for specific

events and report them to the user interface

 Event objects take arguments that are serialized and recorded in the transaction

logs, in the blockchain,

 emit is a keyword used to trigger events

contract EventsExample {
event OwnerChanged(address _oldOwner, address _newOwner);
function transfer(address _newOwner) public {

require(owner == msg.sender, "Sender not authorized");
emit OwnerChanged(owner, _newOwner); owner = _newOwner;

}
}

27

Events

Course : Architecture and Technology of Blockchain Classe : Master1 ISIDS

