

1

Lab : Deployment of Private Ethereum Blockchain

1. Introduction : By Ethereum private blockchain we mean an own blockchain installed locally. The main purpose of the lab
is to setup a private blockchain development environment. the environment provides the necessary framework for the
development of dApps (Distributed Applications) . The dApps include the creation of contract, its deployment in the
blockchain, and the interaction with the contract via a front end web application. The target environment will contain a single
node, for performance constraints, and will be deployed under linux Ubuntu.

2. The environment of dApps development : The environment of dApps development consists of setting up an own
private Ethereum blockchain. As depicted in the figure below, the environment contains three layers. Web layer or the
presentation layer intended for the end user. The compilation and the deployment layer for the development of smart contract.
The mining layer or the blockchain itself, for the mining and running the smart contract. The blockchain software will be the
Geth, it is the official implementation of the Ethereum written in Go.

3. Node characteristics
 The node can be a simple PC :

 RAM 08 GB recommended or higher

 Virtual machine : VMware Workstation
 OS : Linux Ubuntu 64 bit (desktop-amd64)

4. Installation of the environment
 The environment setup requires, mainly, four packages or applications, which are :
 1- NodeJS 2-NPM 3-Geth 4-Truffle

NodeJS : Is an open-source, cross-platform, JavaScript runtime environment that executes JavaScript code outside
a web browser : server-side scripting. Applications are written in JavaScript, and can be run within the Node.js
runtime on OS X, Microsoft Windows, and Linux. It a platform built on Chrome's JavaScript runtime for easily
building fast and scalable network applications. Node.js uses an event-driven, non-blocking I/O model that makes
it lightweight and efficient, perfect for data-intensive real-time applications, JSON APIs based Applications, Data
Streaming Applications and Single Page Applications.
To install Nodejs, run the following command:

To check the installation, issue the command:

Web Layer

- Web Server (Appache)

- nodejs

- Web technologies

 - HTML

 - CSS

 - Ajax

 - JS

 - Etc

- Web librairies

 - web3.js

 - cryptojs

 - Etc ...

Deployment Layer

 Truffle

Solidity

 Bytecode, ABI

 Deploy

Mining Layer

 Ethereum Geth

 EVM, Mine, ...

Mr Abdelhamid DEKHINET
University of BATNA 2
Department of Computer Science

Master 1 : Distributed Information Systems Engineering and Security

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Server-side_scripting

2

NPM : NPM stands for Node Package Manager is included as a recommended feature in Node.js installer, it is a package
manager for the JavaScript programming language. It is the default package manager for the JavaScript runtime
environment Node.js. It consists of a command line client, also called npm, and an online database of public and paid-for
private packages, called the npm registry.
To install NPM, run the following command:

To check the installation, issue the command:

Geth : As mentioned before Geth is the official implementation of the Ethereum written in Go. The platform Geth
is the Ethereum Blockchain itself. The mining process and the execution of transactions are done in Geth.
To install Geth, run the following commands:

To check the installation, issue the command:

Truffle : Truffle is framework and asset pipeline for Ethereum, aiming to facilitate the development process on Ethereum
platform. With Truffle we get built-in smart contract compilation, linking, deployment and binary management, automated
contract testing for rapid development, scriptable, extensible deployment & migrations framework and Network management
for deploying to any number of public & private networks. The truffle package include, in addition to the solidity language,
web3.js library.
To install Truffle, run the following commands:

To check the installation, issue the command:

5. Setup the Ethereum node - Miner
For performance reasons, our blockchain will contain a single node. Its extension follows the same procedure. To setup the
node we can follow the steps:

Create the datadir folder : Each node (Miner) has its own datadir folder . It is used to store all the data needed by the node
to mine normally: genesis block, accounts, ...

https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/Online_database

3

Create the Genesis file : Each blockchain starts with a genesis block that is used to initialize the blockchain and defines the
terms and conditions to join the network. Our genesis block is called “genesis.json” and is stored under "~/node" folder.
The genesis.json file can be created using pupeth tools, included in the truffle suite, or any linux text editor like nano or vi.
The content of our genesis.json file is listed below:

{
 "config": {

 "chainId": 4224,
 "homesteadBlock": 0,
 "eip150Block": 0,
 "eip150Hash": "0x00",
 "eip155Block": 0,
 "eip158Block": 0,
 "byzantiumBlock": 0,
 "constantinopleBlock": 0,
 "petersburgBlock": 0,
 "istanbulBlock": 0,
 "ethash": {}

 },
 "nonce": "0x0",
 "timestamp": "0x5ed53a49",
 "extraData": "0x00",
 "gasLimit": "0x47b760",
 "difficulty": "0x200",
 "mixHash": "0x00",
 "coinbase": "0x00",
 "alloc": {
 "968cbb9bfbfc6ae46dbc732bb7d75ee077c35ef5": {
 "balance": "4200000000000000000000000000000000000"
 },
 "0000000000000000000000000000000000000001": {
 "balance": "0x1"
 },
 "0000000000000000000000000000000000000002": {
 "balance": "0x1"
 },
 "00000000000000000000000000000000000000ff": {
 "balance": "0x1"
 }
 },
 "number": "0x0",
 "gasUsed": "0x0",
 "parentHash": "0x00"

}

Initialize the Miner
At this time we initialize the private blockchain (one miner)with the genesis block. This operation will create the initial
database stored under the data directory dedicated to the miner.
To initialize the miner, run the following commands :

4

The initialization will create, mainly, two subfolders :
 geth: contains the database of your private blockchain (chaindata).

 keystore: location of your wallet used to store the accounts that you will create on the node.

Create accounts : At this step we will create some accounts. This accounts will receive the reward Ether (mining reward) or
to make transaction (smart contract). The first account created will be the default account.
To create account, run the following commands :

 We can create many accounts by issuing the same command. The list of accounts created can be displayed by running the
command bellow :

start running the node
To start running our node, we launch the geth command with a set of parameters, among these parameters :

 identity: name of our node
 networkid: this network identifier is an arbitrary value that will be used to pair all nodes of the same network.

 datadir: folder where our private blockchain stores its data

5

 rpc and rpcport: enabling HTTP-RPC server and giving its listening port number

 port: network listening port number, on which nodes connect to one another to spread new transactions and blocks
 nodiscover: disable the pair discovery mechanism
 mine: mine ethers and transactions

 unlock: id of the default account
 password: path to the file containing the password of the default account

 ipcpath: path where to store the geth.ipc for IPC socket/pipe, file created after starting the node

We store the geth command into a runnable script, named "startnode.sh". The parameters --unlock 0 --password ./password.sec
unlock the default account and refers to the file password.sec containing the account[0] password.

At this step we can start running the node, by launching the script file :

To interact with the miner and running command, we must attach to the node using the Geth attach console. The attachment
can be done using IPC or RPC.

6

You can initialize entirely the blockchain, before initialize the node, by deleting the geth folder in the node :

ub2@ubuntu:~/node$rm -rf geth/

6. Create Ethereum Smart Contract
At this stage our private Blockchain is ready, we can create an Ethereum Smart Contract using Truffle. We will create a
simple “Bank” Smart Contract. To start with this, first we create a new directory to store the Truffle project. And then in that
directory, we will create a new Truffle project. It's done by truffle init command, which create all the necessary files required
for a truffle project.

Write a “bank” Smart Contract
All the contracts should be written in the “contracts” directory. We will switch to this directory and create a contract with the
name “bank.sol”, using text editor :

7

The smart contract cannot be executed by itself. We will have to make some configurations for it.

Configure Truffle Migration
To migrate our Smart Contract, we will have to add a file in the “migrations” directory. In this directory we will add a file
named “2_deploy_contracts.js” with the following contents :

Define the deployment parameters
The file named truffle.js or truffle-config.js must contains all the parameters needed to the deployment. The parameters
include the network (Main net, Ropsten, Rinkebye, ...) in our case is local : 127.0.0.1:8545, the transaction Gas, the Gas price,
the from account to cover transactions, ...

8

Compile the smart contract

Deploy the smart contract
For the deployment we used the account[1]. Before deploying the smart contract, we have to unlock the account and start the
mining process, using the truffle migration command.

9

Once the migration process is complete, all the deployment informations are displayed. The hash of the transaction relative to
the bank smart contract, the block number hosting the transaction, the contract address in the blockchain, Etc...
The follow snapshot shows a part of the mining process.

10

In addition to the deployment informations, a file named bank.json is created :

This file contains a lot of information, the most important are the bytecode of the contract, the contract address, the ABI. The
last two are necessary to the Web front end application to interact with the blockcain.

7. Creating the Web front end application
Install Apache Web Server
To install Apache Web Server, run the commands :

Verify the installation :

Install web3 library
Web3 is a javascript library, it provides a set of functions for interacting with the blockchain. It can be considered as the
middleware between the Web application and the blockchain. To install the library, run the following command :

Normally, the installation process creates two files (package.json, package-lock.json) and a folder (node_modules). If the a
problem occurs during the installaion, and the file package.json is not created, issue the command : npm init -y
We can change the publication folder. In our case, instead of the default /var/www/html, we define /node_modules/web3/ as
publication folder. So we must update the DocumentRoot parameter in the configuration file of apache.

11

Create the Web Front End
The first page of the Web front end application, e.g index.html, must inlude the web3 library, the contract address and the
ABI.

<script src="https://cdn.jsdelivr.net/gh/ethereum/web3.js@1.0.0-beta.36/dist/web3.min.js"></script>
// or <script src="http://localhost/dist/web3.js"></script>
var address = "0x28BB1ba8B84Fe2eC0F6d1E0aA43F2Eb688BA881A";
var abi = [
 { "inputs": [],
 "payable": false,
 "stateMutability": "nonpayable",
 "type": "constructor"
 },
]

 The web application

