Mr Abdelhamid DEKHINET

University of BATNA 2

Department of Computer Science

Master 1 : Distributed Information Systems Engineering and Security

Hog \al
Yersiry o 8RS

Lab : Deployment of Private Ethereum Blockchain

1. Introduction : By Ethereum private blockchain we mean an own blockchain installed locally. The main purpose of the lab
Is to setup a private blockchain development environment. the environment provides the necessary framework for the
development of dApps (Distributed Applications) . The dApps include the creation of contract, its deployment in the
blockchain, and the interaction with the contract via a front end web application. The target environment will contain a single
node, for performance constraints, and will be deployed under linux Ubuntu.

2. The environment of dApps development : The environment of dApps development consists of setting up an own
private Ethereum blockchain. As depicted in the figure below, the environment contains three layers. Web layer or the
presentation layer intended for the end user. The compilation and the deployment layer for the development of smart contract.
The mining layer or the blockchain itself, for the mining and running the smart contract. The blockchain software will be the
Geth, it is the official implementation of the Ethereum written in Go.

Web Layer Deployment Layer Mining Layer

- Web Server (Appache)
- nodejs Truffle Ethereum Geth
- Web technologies EVM, Mine, ...

- HTML Solidity
LTSS

:JAéaX Bytecodf, ABI 1 1
- Etc

- Web librairies
- web3.js =
- cryptojs
- Etc ...

Deploy —»

3. Node characteristics
The node can be a simple PC :
* RAM 08 GB recommended or higher
= Virtual machine : VMware Workstation
* OS:Linux Ubuntu 64 bit (desktop-amd64)

4. Installation of the environment
The environment setup requires, mainly, four packages or applications, which are :
1- NodeJS 2-NPM 3-Geth 4-Truftle

NodeJS : Is an open-source, cross-platform, JavaScript runtime environment that executes JavaScript code outside
a web browser : server-side scripting. Applications are written in JavaScript, and can be run within the Node.js
runtime on OS X, Microsoft Windows, and Linux. It a platform built on Chrome's JavaScript runtime for easily
building fast and scalable network applications. Node.js uses an event-driven, non-blocking I/O model that makes
it lightweight and efficient, perfect for data-intensive real-time applications, JSON APIs based Applications, Data
Streaming Applications and Single Page Applications.

To install Nodejs, run the following command:

:~$ sudo apt-get install nodejs

LI,

To check the installation, issue the command:

:~5 nodejs -v

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Server-side_scripting

NPM : NPM stands for Node Package Manager is included as a recommended feature in Node.js installer, it is a package
manager for the JavaScript programming language. It is the default package manager for the JavaScript runtime
environment Node.js. It consists of a command line client, also called npm, and an online database of public and paid-for
private packages, called the npm registry.

To install NPM, run the following command:

:~% sudo apt-get install npm

To check the installation, issue the command:

~5 npm -v
6.14.4

Geth : As mentioned before Geth is the official implementation of the Ethereum written in Go. The plattform Geth
is the Ethereum Blockchain itself. The mining process and the execution of transactions are done in Geth.
To install Geth, run the following commands:

:~5 sudo apt-get install Eeftware—prepertiES—cemmcnl

:~% sudo add-apt-repository -y ppa:ethereum/ethereum

:~% sudo apt-get update

:~% sudo apt-get install ethereum

To check the installation, issue the command:

:~% geth version
Geth
Version: 1.9.15-stable
Gilt Commit: Of77734bb67b640bdBaf22b215f3d279al1e21170
Architecture: amdé4
Protocol Versions: [65 64 63]
Go Version: gol.14.2
Operating System: linux
GOPATH=
GOROOT=/build/ethereum-640Bnv/.

Truffle : Truftle is framework and asset pipeline for Ethereum, aiming to facilitate the development process on Ethereum
platform. With Truftle we get built-in smart contract compilation, linking, deployment and binary management, automated
contract testing for rapid development, scriptable, extensible deployment & migrations framework and Network management
tfor deploying to any number of public & private networks. The truffle package include, in addition to the solidity language,
web3.js library.

To install Truffle, run the following commands:

:~5$ sudo npm install -g truffle

To check the installation, issue the command:

:~5 truffle version
Truffle v5.1.33 (core: 5.1.33)
Solidity v0.5.16 (solc-js)
Node v16.19.0
Web3.js v1.2.1

5. Setup the Ethereum node - Miner
For performance reasons, our blockchain will contain a single node. Its extension follows the same procedure. To setup the
node we can follow the steps:

Create the datadir folder : Each node (Miner) has its own datadir folder . It is used to store all the data needed by the node
to mine normally: genesis block, accounts, ...

:~$ mkdir node

:~S cd node

https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/Online_database

Create the Genesis file : Each blockchain starts with a genesis block that is used to initialize the blockchain and defines the
terms and conditions to join the network. Our genesis block is called “genesis.json’ and is stored under "~/node" folder.
The genesis.json file can be created using pupeth tools, included in the truftle suite, or any linux text editor like nano or vi.
The content of our genesis.json file is listed below:
{
"config": {
"chainld": 4224,
"homesteadBlock": 0,
"eip150Block": 0,
"eip150Hash": "0x00",
"eip155Block": 0,
"eip158Block": 0,
"byzantiumBlock": 0,
"constantinopleBlock": 0,
"petersburgBlock": 0,
"istanbul Block": 0,
"ethash": {}

"nonce": "0x0
"timestamp": "0x5ed53a49",

"extraData": "0x00",
"gasLimit": "0x47b760",

"difficulty": "0x200",

"mixHash": "0x00",

"coinbase": "0x00",
"alloc": {

"968cbb9bfbfc6ae46dbe732bb7d75ee077c35ef5": {
"balance": "4200000000000000000000000000000000000"

} ’

"'0000000000000000000000000000000000000001": {
"balance": "0x1"

}

n
’

000000000000000000000000000000000000002": {
"balance": "0x1"

}

0000000000000000000000000000000000000ft": {
"balance": "0x1"

}
}’ n

"number": "0x0",
"gasUsed": "0x0",
"parentHash": "0x00"

Initialize the Miner

At this time we initialize the private blockchain (one miner)with the genesis block. This operation will create the initial
database stored under the data directory dedicated to the miner.

To initialize the miner, run the following commands :

B S geth --datadir . init genesis. json
[67-809]|10:14:32.871] Maximum peer count =50 =0
=50
[67-09]|10:14:32.897] Smartcard socket not found, disabling ="stat frun
fpcscd/pcscd.comm: no such file or directory”
[67-809]|10:14:32.938] Allocated cache and file handles =/home
fub2/node fgeth/chaindata =16.00M1iB =16
[@67-89]|10:14:33.038] Writing custom genesis block
[67-09]|10:14:33.0865] Persisted trie from memory database
.B5K1iB ="606.212ps" =0 =0.00B =0s
oB
[67-09]|10:14:33.066] Successfully wrote genesis state
data ="636d34..408d36"
[67-809]|10:14:33.067] Allocated cache and file handles
fub2/nodefgeth/1lightchaindata =16.00MiB =16
[07-09]|10:14:33.093] Writing custom genesis block
[67-09]|10:14:33.094] Persisted trie from memory database
.B5K1iB ="295.018ps" =0 =0.00B =0s
oe

[67-89]|10:14:33.095] Successfully wrote genesis state
chaindata ="636d34..408d36"

The initialization will create, mainly, two subfolders :
= geth: contains the database of your private blockchain (chaindata).

= keystore: location of your wallet used to store the accounts that you will create on the node.
:~% tree node/

— genesis.json

008001.log
CURRENT

LOCK

LOG
MANIFEST-000000

008001.1log
CURRENT

LOCK

LOG
MANIFEST-000000

4 directories, 11 files

Create accounts : At this step we will create some accounts. This accounts will receive the reward Ether (mining reward) or
to make transaction (smart contract). The first account created will be the default account.
To create account, run the following commands :

:~5 cd node/f
B S geth --datadir . account new
[07-89]|10:50:43.624] Maximum peer count =50 =f
=50
[67-89|10:50:43.625] Smartcard socket not found, disabling ="stat frun
/pcscd/pcscd.comm: no such file or directory”
Your new account is locked with a password. Please give a password. Do not forget
this password.
Password:
Repeat password:

Your new key was generated

Public address of the key: OxB8e0f2B220eB86TC5450A275aE2aCE48252a63a546
Path of the secret key file: keystore/UTC--2820-07-89T17-51-05.462765149Z--8e002b
220e86Tc5450a275ae2ace48252a63a546

- You can share your public address with anyone. Others need it to interact with
you.

- You must NEVER share the secret key with anyone! The key controls access to you
r funds!

- You must BACKUP your key file! Without the key, it's impossible to access accou
nt funds!

- ¥You must REMEMBER your password! Without the password, it's impossible to decry
pt the key!

We can create many accounts by issuing the same command. The list of accounts created can be displayed by running the
command bellow :

5 S 1s keystore/
UTC--2020-07-09T17-51-05.462765149Z- -8e002b220e86Tc5450a275ae2aced48252a63a546
UTC--2020-07-09T17-53-40.596317847Z--5a121f80e9202c08c42b95875381be37b967776d

start running the node

To start running our node, we launch the geth command with a set of parameters, among these parameters :
* identity: name of our node
* networkid: this network identifier is an arbitrary value that will be used to pair all nodes of the same network.
= datadir: folder where our private blockchain stores its data

* rpc and rpeport: enabling HT'TP-RPC server and giving its listening port number

= port: network listening port number, on which nodes connect to one another to spread new transactions and blocks
* nodiscover: disable the pair discovery mechanism

* mine: mine ethers and transactions

* unlock: id of the default account

= password: path to the file containing the password of the default account

= ipcpath: path where to store the geth.ipc for IPC socket/pipe, file created after starting the node

We store the geth command into a runnable script, named "startnode.sh". The parameters --unlock 0 --password ./password.sec
unlock the default account and refers to the file password.sec containing the account[07] password.

g S cat startnode.sh
.geth --networkid 4224 --datadir "~/node" --nodiscover --rpc --ipcpath "~/node/geth.ipc”

--rpccorsdomain "*" --rpcapi eth,web3,personal,net,miner,admin --unlock © --password .
/password.sec --allow-insecure-unlock

At this step we can start running the node, by launching the script file :

B S ./startnode.sh

[07-89]12:13:30.250] Maximum peer count =50 =0 =50

[07-09]12:13:30.251] The flag --rpc is deprecated and will be removed in the future, please use --http

[07-09]12:13:30.251] The flag --rpccorsdomain is deprecated and will be removed in the future, please u
se --http.corsdomain
W [07-09]12:13:30.251] The flag --rpcapi is deprecated and will be removed in the future, please use --ht
tp.api

[07-09)12:13:30.265] Smartcard socket not found, disabling ="stat frun/pcscd/pcscd.comm: no such
file or directory"

[@7-89]12:13:30.330] Starting peer-to-peer node =Gethfv1.9.15-stable-0f77f34b/1lin
ux-amdé64/gol.14.2

[07-89]12:13:30.331] Allocated trie memory caches =256.00M1B =256.00M1B

[07-09]12:13:30.332] Allocated cache and file handles =/homefub2/node/geth/chaindata

=512.00M1iB =524288

[@7-89]12:13:30.573] Opened ancient database =/homefub2/node/geth/chaindata/an
cient

[07-089)12:13:30.678] Initialised chain configuration ="{ChainID: 4224 Homestead: © DAOD:
<nil> DAOSupport: false EIP150: ® EIP155: @ EIP158: © Byzantium: 0@ Constantinople: © Petersburg: © Istanbul:

®, Muir Glacier: <nil>, YOLO v1: <nil>, Engine: ethash}"

[07-09]12:13:30.679] Disk storage enabled for ethash caches =/home fub2/node/geth/ethash =3

[@7-89)12:13:30.679] Disk storage enabled for ethash DAGs =/home fub2/.ethash =2

[@7-89]12:13:30.708] Initialising Ethereum protocol ="[65 64 63]" =4224

=<nil=>

[07-09]12:13:30.709] Upgrade blockchain database version ']

[07-09]12:13:30.745] Loaded most recent local header 636d34..408d36" =512
1molwld

[07-09)12:13:30.746] Loaded most recent local full block "636d34..408d36" =512
1molwid

[@7-09)12:13:30.746] Loaded most recent local fast block "636d34..408d36" =512

To interact with the miner and running command, we must attach to the node using the Geth attach console. The attachment
can be done using IPC or RPC.

: S geth attach geth.ipc
Welcome to the Geth JavaScript console!

instance: Geth/fv1.9.15-stable-of77f34bf1linux-amd64/gol.14.2

coinbase: 0x8e002b220e86fc5450a275ae2ace48252a63a546

at block: ® (Mon Jun 81 2020 10:26:33 GMT-0700 (PDT))

datadir: /fhome/fub2/node

modules: admin:1.0 debug:1.0 eth:1.8 ethash:1.0 miner:1.® net:1.06 personal:1
.0 rpc:1.8 txpool:1.8 web3:1.0

eth.coinbase

eth.accounts

eth.getBalance(eth.coinbase)

exit

B S geth attach rpc:http://127.0.0.1:8545
Welcome to the Geth JavaScript console!

instance: Geth/v1.9.15-stable-0f77f34b/1linux-amd64/gol.14.2
coinbase: OxBePB2b220e86Tc5450a275ae2ace48252a63a546
at block: ® (Mon Jun @1 2020 10:26:33 GMT-0700 (PDT))
datadir: fhomefub2/node
modules: admin:1.8 eth:1.8 miner:1.0 net:1.® personal:1.8 rpc:1.6 web3:1.08
> eth.coinbase
= eth.getBalance(eth.coinbase)
= miner.start()
null
eth.getBalance(eth.coinbase)
eth.getBalance(eth.coinbase)
eth.getBalance(eth.coinbase)

web3.fromWei(eth.getBalance(eth.coinbase))

web3.fromWei(eth.getBalance(eth.coinbase))

You can initialize entirely the blockchain, before initialize the node, by deleting the geth folder in the node

ub2@ubuntu:~/node$rm -rf geth/

6. Create Ethereum Smart Contract
At this stage our private Blockchain is ready, we can create an Ethereum Smart Contract using Truftfle. We will create a
simple “Bank” Smart Contract. To start with this, first we create a new directory to store the Truffle project. And then in that

directory, we will create a new Truftle project. It's done by truffle init command, which create all the necessary files required
tor a truffle project.

:~S mkdir truffle
:~S cd truffle/f
S truffle init

Starting unbox...

Preparing to download box
Downloading

cleaning up temporary files
Setting up box

Unbox successful, sweet!
Commands:
Compile: truffle compile

Migrate: truffle migrate
Test contracts: truffle test

Write a “bank” Smart Contract
All the contracts should be written in the “contracts” directory. We will switch to this directory and create a contract with the
name “bank.sol”, using text editor :

GNU nano 4.8 bank.sol
yragma solidity ==0.4.22 <0.7.08;

contract bank {

int cpt;
constructor() public { cpt = 1; }
function getbalance() view public returns{int) { return cpt; }

function debit(int mnt) public { cpt = cpt - mnt ; }
function credit(int mnt) public { cpt = cpt + mnt ; }

Read 14 lines
G Get Help K¢ Write Dut AW Hhere Is @8 Cut Text gE Justify e Cur PDS

The smart contract cannot be executed by itself. We will have to make some configurations for it.

Configure Truffle Migration
To migrate our Smart Contract, we will have to add a file in the “migrations” directory. In this directory we will add a file
named “2_deploy_contracts.js” with the following contents :

Bank = artifacts.require(
module.exports = (deployer) {

deployer.deploy(Bank);
1;

Define the deployment parameters

The file named truffle.js or truffle-config.js must contains all the parameters needed to the deployment. The parameters
include the network (Main net, Ropsten, Rinkebye, ...) in our case is local : 127.0.0.1:8545, the transaction Gas, the Gas price,
the from account to cover transactions, ...

GNU nano 4.8 truffle-config. js

module.exports = {
rpc: {
host:
port:

1,

networks: {

development: {
host:

port: ,
network_1id:
gas: s
gasprice: 2,
from:

Compile the smart contract
S truffle compile

Compiling your contracts...

Fetching solc version list from solc-bin. Attempt #1
Downloading compiler. Attempt #1.

Compiling ./contracts/Migrations.sol
Compiling ./contracts/bank.sol
Artifacts written to /homefub2/trufflef/build/contracts
Compiled successfully using:
- solc: O.5.16+commit.9c3226ce.Emscripten.clang

AV U T)

Deploy the smart contract
For the deployment we used the account[[17]. Before deploying the smart contract, we have to unlock the account and start the

mining process, using the ¢ruffle migration command.
> personal.listAccounts
[)

]
> personal.unlockAccount("@x5a121f80e9202c08c42b958f5381be37b967776d")

Unlock account 8x5a121f80e9202c08c42b958f5381be37b967776d
Passphrase:

true

= miner.start()

null

$ truffle migrate

Compiling your contracts...

= Everything is up to date, there is nothing to compile.

Starting migrations...

Network name: "development'
Network id: 4224
Block gas limit: 5618878 (0x55bcbe)

1_initial_migration.js

Deploying "Migrations'

transaction hash:
Blocks: @
contract address:
block number:
block timestamp:
account:

balance:

gas used:

gas price:

value sent:

total cost:

Bx930d4c6d53eb128fdae9d408e0c680chbde1eTI0abd34570afa3c918d18a795a1
Seconds: 122
0xDb9F49B6696503296bC6ASEDEd1001ETABAAT 746
186

1594334146
Ox8e0R2B220e86C5450A2T5aE2aCE48252a63a546
372

164175 (0x2814f)

20 gweil

@ ETH

0.0032835 ETH

Saving migration to chain.

Saving artifacts

Total cost:

2 deploy contracts.js

Deploying 'bank'

transaction hash:

Blocks: @

contract address:

block number:
block timestamp:
account:
balance:

gas used:

gas price:

value sent:
total cost:

0.0032835 ETH

Oxc62028597c2bb617759105e13fddf7487a31a39d59107f6cede5b915a5878109
Seconds: @
@xc2aF83533Fc671880E7aF4E6b12DdT2Fb48AEBaS
191

15943343468
0x8e002B220086fC5450A275aE2aCE48252a63a546
382

131623 (B8x20227)

20 gwel

@ ETH

0.60263240 ETH

Saving migration to chain.

Saving artifacts

Total cost:

0.80263246 ETH

Summary

> Total deployments: 2
> Final cost: B.00591596 ETH

Once the migration process is complete, all the deployment informations are displayed. The hash of the transaction relative to
the bank smart contract, the block number hosting the transaction, the contract address in the blockchain, Etc...
The follow snapshot shows a part of the mining process.

[07-89|15:38:59.
[07-89|15:38:59.

487a31a39d59107f6cede5b915a5878109

[07-89|15:38:59.
"¢40161..d018e8"

095] . mined potential block =189 ="926a8b..21d928"
604] Submitted contract creation
=0xc2aFB83533Fc671880E7aF4EG6b12Dd72Fb4BAEBaS
=190

803] Successfully sealed new block ="317c64..252c68"

=712.998ms

=0xc62028597c2bb617759f05e13fa

=183
=191

[067-09]15:38:59.803] cfﬁblock reached canonical chain
[67-89]15:38:59.803] Commit new mining work

=0 =0 =0 =0 ="523.124ps"
[67-89]15:38:59.804] Commit new mining work

=0 =1 =131623 =0.00263246 =1.085ms
[07-09]15:38:59.804] “\ mined potential block

=191

=190
=191

[67-89]15:39:01.305] Successfully sealed new block
"01c33f..380211"

=1.500s
[07-09]15:39:01.306] ijblcck reached canonical chain
[67-89]15:39:01.309] Commit new mining work

=0 =0 =0 =0 =4.083ms
[07-69]15:39:01.310] “\ mined potential block

=184
=192

=191

="317bee..7b94a0"
="86d703..734ff1"

="33c41a..f328a9"

="c40161..d018e8"
="33c41a..f328a9"

="9578db..51bd46"
="70a4d7..e6bbd0"

="01c33f..380211"

[07-09|15:39:01.899] Submitted transaction =0x920139e81dbbbb7da6afb71ce9?2
313eb3bfec663fccb8c7claf726583e0ec =0xDb9F49B6696503296bC6OSEDEA1001E7ABAATT46
[07-89]15:39:04.317] Commit new mining work =192 ="f82166..77c41d"
=0 =1 =27341 =0.00054682 ="440.191ps"
[67-89]15:39:07.625] Successfully sealed new block
"24843c..e1620d" =3.308s
[07-09[15:39:07.625] ijblock reached canonical chain
[07-0915:39:07.626] Commit new mining work
=0 = = =0 ="697.113ps"

In addition to the deployment informations, a file named bank.json is created :

=192 ="782166..77c41d"

="b9fd9%e..95beda"
="e02ed1..a26d5e"

=185
=193

‘bank.json Migrations.json
This file contains a lot of information, the most important are the bytecode of the contract, the contract address, the ABI. The
last two are necessary to the Web front end application to interact with the blockcain.

7. Creating the Web front end application
Install Apache Web Server
To install Apache Web Server, run the commands :

$_sudo apt-get update
S sudo apt-get install apache2

Verity the installation :

:~5 systemctl status apache2
apache2.service - The Apache HTTP Server
Loaded: loaded (/lib/systemd/system/apache2.service; enabled; vendor pres
Active: since Fri 2020-07-10 67:51:12 PDT; 1h 16min ago

Install web3 library
Web3 is a javascript library, it provides a set of functions for interacting with the blockchain. It can be considered as the
middleware between the Web application and the blockchain. To install the library, run the following command :

:~5 sudo npm install web3 ——Savel

Normally, the installation process creates two files (package.json, package-lock.json) and a folder (node_modules). If the a
problem occurs during the installaion, and the file package.json is not created, issue the command : npm init -y

We can change the publication folder. In our case, instead of the default /var/www/html, we define /node_modules/web3/ as
publication folder. So we must update the DocumentRoot parameter in the configuration file of apache.

Create the Web Front End
The first page of the Web front end application, e.g index.html, must inlude the web3s library, the contract address and the
ABL

<script src="https://cdn.jsdelivr.net/gh/ethereum/web3.js@1.0.0-beta.36/dist/web3.min.js"></script>
// or <script src="http://localhost/dist/web3.js"></script>
var address = "0x28BB1ba8B84Fe2eCOF6d1E0aA43F2Eb68SBASS1A";

var abi = [
{ "inputs": [],
"payable": false,
"stateMutability": "nonpayable",
"type": "constructor"
2

The web application

< c @ @ | @ localhost/index-bank.html

Deposer Retirer

