| Test | Exam | |------|------| |------|------| | <u>Test</u> | <u>Exam</u> | |---|---| | What is the genesis block? | In Bitcoin a block is produced every: | | Any block created by the founder | 2 weeks | | The last block created in the Blockchain | 20 minutes | | The first block of a Blockchain | 2016 minutes | | The first transaction in each block | ■ 10 minutes | | The transaction Merkle Tree root value in a Bitcoin block | Where is a Blockchain's central server? | | is calculated using, | Where the blockchain is created | | Hash of transactions | Located with the owner of the server | | Previous block's hash | There is no central server, it is distributed | | Number of transactions | Ordered Node | | None of the above The main preparties of blockshain are 2 | The constitute of moulting by such in his clock in its collect | | The main properties of blockchain are? Decentralization | The generation of multiple branchs in blockchain is called, Division | | Decentralization Immutability | Merge | | Transparency | - Meige - Fork | | All of the above | None of the above | | Given a message M and a hash function H | What key must be used by Bob to be certain that only | | Knowing H(M), one can compute M | Alice can read the message that Bob wants to send her? | | Knowing M, one can compute H(M) | Bob public key | | H(M) and M always have the same size | Alice private key | | It is guaranteed that H(H(M)) = M | Alice public key | | | Bob private key | | What is the hashing algorithm used in bitcoin? | In Ethereum the EOA is, | | ■ MD5 | controlled by a contract code | | Keccak-256 | controlled by a private key | | ■ SHA-256 | 160-bits length | | ■ RIPEMD-160 | 256-bits length | | Full node does not, | The mining in bitcoin consists to find a nounce value that | | Maintains a complete copy of the blockchain | will make the first k bits of its n hash bits to zero, i.e., | | Mines block | finding hash values that are smaller than or equal to a | | Verify all transactions | certain target value. Suppose that n=8 and k=3, so the | | adds it to the blockchain | target value is, | | to alliante account and the taffing account the attended | • 29 • 30 • 31 • 32 | | In elliptic curve, we assume that after several iterations | In the smart contract program we must explicitly specify | | we obtain 17P+P = 6, we say that, ■ 17P is the opposite of P | the constructor True | | 17P is the opposite of P 17P is the inverse of P | ■ False | | P is the inverse of 17P | - 1 4136 | | ■ 17P is the primitive of P | | | In digital signature, a valid signature must verify, | The earliest deployed consensus algorithms are : | | Verify(pk,message,sign(sk,message))==true | ■ Bitcoin-NG, PoW, PBFT | | Verify(pk,message,sig)==true | PoS, Algorand, PoW | | Verify(pk,message,sk,message)==true | DAG-based, PoW, PoS | | Verify(pk,message,sk)==true | PoW, PoS, PBFT | | The smart contract deployment process consists of : | web3.js allow the frontend to communicate with an | | Generating the ABI | ethereum node via, | | Generating the Byte code | servlet | | Compiling the smart contract | JSON-RPC | | None of the above | • Websocket | | | • HTTP | | const web3 = new Web3('http://127.0.0.1:7545'); indicate | The function web3.eth.sendTransaction is used to: | | that we will use the blockchain : | Transfert ether between account | | Remix | Send transaction Cot the list of transactions | | Web3.jsGanache | Get the list of transactions Got the arguments of the transactions | | - Udildule | Get the arguments of the transactions | | HTTP | |