TD N°2 Avec Solution Logique des Propositions Déduction Naturelle (Preuve Syntaxique)

Rappels:

Pour démontrer qu'une formule F est valide syntaxiquement en calcul des propositions, on montre que cette formule est **prouvable** ou **dérivable** en utilisant un système de déduction, et on note : ⊢ F

On utilisera les axiomes d'**Hilbert**, de la logique booléenne suivants (il existe d'autres axiomes non cités), un axiome de la logique booléenne est n'importe quelle **instance** d'une des formules suivantes :

$(X1 \rightarrow (X2 \rightarrow X1))$	(axiome 1 pour l'implication)
$((X1 \rightarrow (X2 \rightarrow X3)) \rightarrow ((X1 \rightarrow X2) \rightarrow (X1 \rightarrow X3)))$	(axiome 2 pour l'implication)
$(X1 \rightarrow \exists X1)$	(axiome 1 pour la négation)
$(\exists X1 \rightarrow X1)$	(axiome 2 pour la négation)
$((X1 \to X2) \to (\overline{X2} \to \overline{X1}))$	(axiome 3 pour la négation)
$(X1 \rightarrow (X2 \rightarrow (X1 \land X2)))$	(axiome 1 pour la conjonction)
((X1 ∧ X2) →X1)	(axiome 2 pour la conjonction)
$((X1 \land X2) \rightarrow X2)$	(axiome 3 pour la conjonction)
$(X1 \rightarrow (X1 \lor X2))$	(axiome 1 pour la disjonction)
$(X2 \rightarrow (X1 \lor X2))$	(axiome 2 pour la disjonction)
$((((X1 \lor X2) \land (X1 \to \mathcal{C})) \land (X2 \to \mathcal{C})) \to \mathcal{C})$	(axiome 3 pour la disjonction)

Et ajouter le Modus Ponens (MP), défini par :

$$\begin{array}{ccc} Si & A \\ Et & A \rightarrow B \\ Donc & B \end{array}$$

Exercice1:

P, Q, R, S sont des propositions. En utilisant les axiomes cités, prouvez que R est dérivable à partir de a) et b).

a)
$$P \rightarrow (\neg Q \rightarrow (R \land S))$$

b) $P \land \neg Q$

C'est-à-dire Prouver: $P \rightarrow (\neg Q \rightarrow (R \land S)), P \land \neg Q \vdash R$?

1:
$$P \land \neg Q$$
 Hypothèse2
2: $(P \land \neg Q) \rightarrow P$ Axiome de '\!\'\'

4:
$$P \rightarrow (\neg Q \rightarrow (R \land S))$$
 Hypothèse 1
5: $(\neg Q \rightarrow (R \land S))$ MP de 3 et 4

7:
$$(\mathbf{R} \wedge \mathbf{S})$$
 MP de 6 et 5

Remarque importante : Toutes les hypothèses doivent être utilisées dans la démonstration !

Exercice2:

En utilisant les axiomes de la déduction d'Hilbert et le Modus Prouver encore l'assertion suivante avec A et B des propositions quelconques :

```
(a) (A \rightarrow B), A\vdash A?

1: A Hypothèse 2

2: A \rightarrow ((A\rightarrow B) \rightarrow A) Axiome1 de l'implication (X1:A, X2:(A\rightarrowB))

3: (A \rightarrow B) \rightarrow MP de 1 et 2

4: A \rightarrow B Hypothèse 1

5: A MP de 4 et 3
```

```
(b) (A \rightarrow (B \rightarrow C)), A, C \vdash B?

1: (A \rightarrow (B \rightarrow C)) Hypothèse 1

2: A Hypothèse 2

3: B \rightarrow C MP de 2 et 1

4: (B \rightarrow C) \rightarrow (C \rightarrow B) Axiome de la négation

5: C \rightarrow B MP de 3 et 4

6: C \rightarrow B Hypothèse 3

7: B \rightarrow C Hypothèse 3

MP de 6 et 5
```

(c) $\neg B \vdash B \rightarrow A$?

1:
$$\neg B$$
 Hypothèse
2: $\neg B \rightarrow (\neg A \rightarrow \neg B)$ Axiome1 de l'implication
3: $\neg A \rightarrow \neg B$ MP de 1 et 2
4: $(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$ Axiome4 de la négation
5: $B \rightarrow A$ MP de 3 et 4

Exercice3: Changement de l'exercice!

$$(A \rightarrow B)$$
, $B \vdash A$?

1. A→B

hypothèse 1

2. $(A \rightarrow B) \rightarrow (B \rightarrow (A \rightarrow B))$

Axiome1 de l'implication (X1= (A \rightarrow B), X2= $\overline{\ \ }$ B)

3. $B \rightarrow (A \rightarrow B)$

MP 1. et 2.

4. B

Hypothèse 2 MP 4.et3.

5.
$$A \rightarrow B$$

Axiome 1 de la négation

6.
$$(A \rightarrow B) \rightarrow (B \rightarrow A)$$

7. $B \rightarrow A$

MP 5.et6.

8. A

MP 4.et7.