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Correction n°3

Real Functions of One Real Variable

Solution 1

Evaluate the limits :
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The numerator goes to 1 and the denominator goes to +o0, then the limit of quotient goes to 0.
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By squeeze theorem : lim w =4
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Solution 2
x> —x—2
1. Show that f has a continuous extension to x = 2, where f(z) = i T #2
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Here f(2) has not been defined.
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Thus, lim2 f(x) exists, therefore f has a removable discontinuity at zy = 2.
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Hence, The continuous extension is
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2. Determine the value of a and b for which the function g is continuous at x =0 :

(a) we have g(0) =b
(b) Determie Left hand limit
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(c) Determie Right hand limit
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From (a), (b) and (c), g is continuous if b =a + 2 = 7 Therefore a = —5 and b = 5

Solution 3

1. Examine the differentiability :
¢ o [ is differentiable on R-{0}, because it is a product and a composite of differentiable function
on R-{0}
e Show that f is differentiable at 0,
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Hence f is differentiable at 0. Therefore, f is differentiable on R
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¢ ¢ g is differentiable at 0: we have 0 = and we know that
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_ In(1 —
i 9@ -9 _ ) W(l-2)
x—0~ z—0 r—0~ x



For x > 0,
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The Right hand limit and Left hand limit are not equal. Thus, g is not differentiable at 0.
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Solution 4

1. Let f be the function defined by :  f(z) = 22? — 162 + 1

(a) Find the extremum of f on [0,9]

First, we find all possible critical points. Since f is differentiable :

f(z)=0 < 42 -16=0

— x =4

for x € [0,4[, we have f'(z) < 0 and for z €]4,9], we have f’(z) > 0 Then f(4) = —31 is

the muximun value of f on [0,9].

(b) Show that the equation f(z) = 0 has a unique solution a on [0, 3].

e f is continuous on R because it is a polynomial function, then f is continuous on [O, 3].
e From (a) f is strictly decreasing on [0, 4[, then on [0, 3].
e f(10,3]) = [f(3), f(0)] = [-29,1]
Hence 0 € f([0,3]). (ie. f(0).f(3) <0)
Therefore, by IVT the equation f(z) = 0 has unique solution « on |0, 3].
2. The function g is continuous on [—1;0[ U ]0, 1] and differentiable on [—1;0[ U ]0, 1]
e Show that g is differentiable at 0

lim g(z) — g(0) .1 —cos(2mx) 4
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Hence: g¢ is differentiable at 0

e we know that if g is differentiable at 0, then g is continuous at 0. Indeed,

1 — cos(27x)

lim g(x) = lim 4’z =0 = g(0)
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It follows that ¢ is continuous on [—1; 1] and differentiable on [—1; 1] and we have g(—1) = g(1)
By Rolle’s Theorem, there exist ¢ €] — 1,1 such that: ¢’(¢) =0



