Correction ${ }^{\circ} 3$

Real Functions of One Real Variable

Solution 1I

Evaluate the limits :

1. $\lim _{x \rightarrow+\infty} \frac{\sqrt{1+x^{2}}-\sqrt{1+x}}{x^{2}}$. At $+\infty, x>0$ hence $|x|=x$

$$
\begin{gathered}
\frac{\sqrt{1+x^{2}}-\sqrt{1+x}}{x^{2}}=\frac{\sqrt{x^{2}\left(\frac{1}{x^{2}}+1\right)}-\sqrt{x^{2}\left(\frac{1}{x^{2}}+\frac{1}{x}\right)}}{x^{2}}=\frac{|x| \sqrt{\frac{1}{x^{2}}+1}-|x| \sqrt{\frac{1}{x^{2}}+\frac{1}{x}}}{x^{2}} \\
=\frac{x \sqrt{\frac{1}{x^{2}}+1}-x \sqrt{\frac{1}{x^{2}}+\frac{1}{x}}}{x^{2}}=\frac{\sqrt{\frac{1}{x^{2}}+1}-\sqrt{\frac{1}{x^{2}}+\frac{1}{x}}}{x}
\end{gathered}
$$

The numerator goes to 1 and the denominator goes to $+\infty$, then the limit of quotient goes to 0 .
2. $\lim _{x \rightarrow-\infty} \frac{4 x^{2}-\sin (5 x)}{x^{2}+7}$. We know that

$$
\begin{aligned}
-1 & \leqslant \sin (5 x) \leqslant 1 \\
-1 & \leqslant-\sin (5 x) \leqslant 1 \\
4 x^{2}-1 & \leqslant 4 x^{2}-\sin (5 x) \leqslant 4 x^{2}+1 \\
\frac{4 x^{2}-1}{x^{2}+7} & \leqslant \frac{4 x^{2}-\sin (5 x)}{x^{2}+7} \leqslant \frac{4 x^{2}+1}{x^{2}+7} \quad\left(\frac{1}{x^{2}+7}>0\right)
\end{aligned}
$$

Since $\lim _{x \rightarrow-\infty} \frac{4 x^{2}-1}{x^{2}+7}=\lim _{x \rightarrow-\infty} \frac{4 x^{2}}{x^{2}}=4$ and $\lim _{x \rightarrow-\infty} \frac{4 x^{2}+1}{x^{2}+7}=\lim _{x \rightarrow-\infty} \frac{4 x^{2}}{x^{2}}=4$
By squeeze theorem : $\lim _{x \rightarrow-\infty} \frac{4 x^{2}-\sin (5 x)}{x^{2}+7}=4$

Solution 21

1. Show that f has a continuous extension to $x=2$, where $f(x)=\frac{x^{2}-x-2}{x^{2}-4}, \quad x \neq 2$

Here $f(2)$ has not been defined.

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x^{2}-4} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+1)}{(x-2)(x+2)} \\
& =\lim _{x \rightarrow 2} \frac{x+1}{x+2} \\
& =\frac{3}{4}
\end{aligned}
$$

Thus, $\lim _{x \rightarrow 2} f(x)$ exists, therefore f has a removable discontinuity at $x_{0}=2$.
Hence, The continuous extension is

$$
\tilde{f}(x)= \begin{cases}\frac{x^{2}-x-2}{x^{2}-4} & \text { for } x \neq 2 \\ \frac{3}{4} & \text { for } x=2\end{cases}
$$

2. Determine the value of a and b for which the function g is continuous at $x=0$:
(a) we have $g(0)=b$
(b) Determie Left hand limit

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} \frac{\sin ((a+1) x)+\ln (x+1)}{x} & =\lim _{x \rightarrow 0^{-}} \frac{\sin ((a+1) x)}{x}+\lim _{x \rightarrow 0^{-}} \frac{\ln (x+1)}{x} \\
& =\lim _{x \rightarrow 0^{-}} \frac{(a+1) \sin ((a+1) x)}{(a+1) x}+\lim _{x \rightarrow 0^{-}} \frac{\ln (x+1)}{x} \\
& =(a+1)+1=a+2 .
\end{aligned}
$$

(c) Determie Right hand limit

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x+x^{2}}-\sqrt{x}}{x \sqrt{x}} & =\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x+x^{2}}-\sqrt{x}}{x \sqrt{x}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x} \sqrt{x+1}-\sqrt{x}}{x \sqrt{x}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x+1}-1}{x} \\
& =\lim _{x \rightarrow 0^{+}} \frac{(\sqrt{x+1}-1)(\sqrt{x+1}+1)}{x(\sqrt{x+1}+1)} \\
& =\lim _{x \rightarrow 0^{+}} \frac{x}{x(\sqrt{x+1}+1)} \\
& =\lim _{x \rightarrow 0^{+}} \frac{1}{\sqrt{x+1}+1}=\frac{1}{2}
\end{aligned}
$$

From $(a),(b)$ and $(c), g$ is continuous if $b=a+2=\frac{1}{2}$. Therefore $a=-\frac{3}{2}$ and $b=\frac{1}{2}$

Solution 31

1. Examine the differentiability :
$\diamond \bullet f$ is differentiable on \mathbb{R} - $\{0\}$, because it is a product and a composite of differentiable function on $\mathbb{R}-\{0\}$

- Show that f is differentiable at 0 ,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{2} \sin \left(\frac{1}{x}\right)}{x} & =\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right) \\
& =\lim _{t \rightarrow+\infty} \frac{1}{t} \sin (t) \\
& =0
\end{aligned}
$$

Hence f is differentiable at 0 . Therefore, f is differentiable on \mathbb{R}

- g is differentiable at 0 : we have $\frac{g(x)-g(0)}{x-0}=\frac{\ln (1+|x|)}{x}$ and we know that

$$
\lim _{t \rightarrow 0} \frac{\ln (1+t)}{t}=1
$$

For $x<0$, since $t=-x$ we obtain

$$
\lim _{x \rightarrow 0^{-}} \frac{g(x)-g(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{\ln (1-x)}{x}=-1
$$

For $x>0$,

$$
\lim _{x \rightarrow 0^{+}} \frac{g(x)-g(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{\ln (1+x)}{x}=1
$$

The Right hand limit and Left hand limit are not equal. Thus, g is not differentiable at 0 .

Solution $4 \mid$

1. Let f be the function defined by : $f(x)=2 x^{2}-16 x+1$
(a) Find the extremum of f on $[0,9]$

First, we find all possible critical points. Since f is differentiable :

$$
\begin{aligned}
f^{\prime}(x)=0 & \Longleftrightarrow 4 x-16=0 \\
& \Longrightarrow x=4
\end{aligned}
$$

for $x \in\left[0,4\left[\right.\right.$, we have $f^{\prime}(x)<0$ and for $\left.\left.x \in\right] 4,9\right]$, we have $f^{\prime}(x)>0$ Then $f(4)=-31$ is the muximun value of f on $[0,9]$.
(b) Show that the equation $f(x)=0$ has a unique solution α on $[0,3]$.

- f is continuous on \mathbb{R} because it is a polynomial function, then f is continuous on $[0,3]$.
- From $(a) f$ is strictly decreasing on $[0,4[$, then on $[0,3]$.
- $f([0,3])=[f(3), f(0)]=[-29,1]$

Hence $0 \in f([0,3])$. (ie. $f(0) . f(3)<0)$
Therefore, by IVT the equation $f(x)=0$ has unique solution α on $[0,3]$.
2. The function g is continuous on $[-1 ; 0[\cup] 0,1]$ and differentiable on $[-1 ; 0[\cup] 0,1]$

- Show that g is differentiable at 0

$$
\lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x}=\lim _{x \rightarrow 0} \frac{1-\cos (2 \pi x)}{(2 \pi x)^{2}} 4 \pi^{2}=2 \pi^{2} \in \mathbb{R}
$$

Hence: g is differentiable at 0

- we know that if g is differentiable at 0 , then g is continuous at 0 . Indeed,

$$
\lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0} \frac{1-\cos (2 \pi x)}{(2 \pi x)^{2}} 4 \pi^{2} x=0=g(0)
$$

It follows that g is continuous on $[-1 ; 1]$ and differentiable on $[-1 ; 1]$ and we have $g(-1)=g(1)$
By Rolle's Theorem, there exist $c \in]-1,1\left[\right.$ such that: $g^{\prime}(c)=0$

