Correction $\mathrm{n}^{\circ} 4$

Elementary Function and Application

Solution 1|

Let

$$
\begin{aligned}
f:] 1,+\infty[& \longrightarrow]-1,+\infty[\\
x & \longmapsto f(x)=x \ln (x)-x
\end{aligned}
$$

1) Show that f admits an inverse function f^{-1} :
(a) The function f is continuous on $] 1,+\infty[$ as the product and sum of two functions $(x \longmapsto x \ln (x)$ and $x \longmapsto-x)$ which are continuous on $] 1,+\infty[$.
(b) The function f is differentiable on $] 1,+\infty\left[\right.$ and $f^{\prime}(x)=\ln (x)$

It is clear that, for $x \in] 1,+\infty[, \ln (x)>0$. Then, f is strictly increasing on $] 1,+\infty[$.
It follows that f admits an inverse function f^{-1} defined on $]-1,+\infty[$, indeed

$$
J=f(] 1,+\infty[)=] \lim _{x \longrightarrow 1} f(x), \lim _{x \rightarrow+\infty} f(x)[=]-1,+\infty[
$$

2) Find $f^{-1}(0)$ and $\left(f^{-1}\right)^{\prime}(0)$:
\triangleright Since f^{-1} is the inverse function of f, we have:

$$
\begin{aligned}
& 0 \in]-1,+\infty[\\
& f^{-1}(0)=x
\end{aligned} \Leftrightarrow \quad \begin{aligned}
& x \in] 1,+\infty[, \\
& f(x)=0
\end{aligned}
$$

So, we solve for $x \in] 1,+\infty[, f(x)=0$

$$
\begin{aligned}
f(x)=0 & \Longleftrightarrow x \ln (x)-x=0 \\
& \Longleftrightarrow x=0 \text { ou } \ln (x)=1 \\
& \Longleftrightarrow x=0 \text { ou } x=e
\end{aligned}
$$

Thus, $f(x)=0$ for $x=e(x=0$ refused because $0 \notin] 1,+\infty[)$. Hence, $f^{-1}(0)=e$
\triangleright Find $\left(f^{-1}\right)^{\prime}(0)$: We have $f(e)=0$ and $f^{\prime}(e)=1 \neq 0$, therefore f^{-1} is differentiable in 0 and

$$
\left(f^{-1}\right)^{\prime}(0)=\frac{1}{f^{\prime}\left(f^{-1}(0)\right)}=\frac{1}{\ln (e)}=1
$$

Solution 2|

1) For all $x \in \mathbb{R}$:

$$
\frac{1-\tan ^{2}(x)}{1+\tan ^{2}(x)}=\frac{1-\frac{\sin ^{2}(x)}{\cos ^{2}(x)}}{1+\frac{\sin ^{2}(x)}{\cos ^{2}(x)}}=\frac{\cos ^{2}(x)-\sin ^{2}(x)}{\cos ^{2}(x)+\sin ^{2}(x)}=\cos ^{2}(x)-\sin ^{2}(x)=\cos (2 x) .
$$

Because, $\left\{\begin{array}{l}\cos ^{2}(x)+\sin ^{2}(x)=1 \\ \cos (2 x)=\cos (x+x)=\cos (x) \cos (x)-\sin (x) \sin (x)=\cos ^{2}(x)-\sin ^{2}(x)\end{array}\right.$
2) Show that: $\arccos \left(\frac{4}{5}\right)=2 \arctan \left(\frac{1}{3}\right)$.

According to the question 1, we have

$$
\cos \left(2 \arctan \left(\frac{1}{3}\right)\right)=\frac{1-\tan ^{2}\left(\arctan \left(\frac{1}{3}\right)\right)}{1+\tan ^{2}\left(\arctan \left(\frac{1}{3}\right)\right)}=\frac{1-\left(\frac{1}{3}\right)^{2}}{1+\left(\frac{1}{3}\right)^{2}}=\frac{4}{5}
$$

Since $0<\frac{1}{3}$ and arctan is increasing, then

$$
\begin{aligned}
\arctan (0)<\arctan \left(\frac{1}{3}\right)<\frac{\pi}{2} & \Longrightarrow 0<\arctan \left(\frac{1}{3}\right)<\frac{\pi}{2} \\
& \Longrightarrow 0<2 \arctan \left(\frac{1}{3}\right)<\pi
\end{aligned}
$$

Thus,

$$
\cos \left(2 \arctan \left(\frac{1}{3}\right)\right)=\frac{4}{5} \Longrightarrow 2 \arctan \left(\frac{1}{3}\right)=\arccos \left(\frac{4}{5}\right)
$$

Solution 31

We have :

$$
f(x)=\arcsin \left(\frac{1-x^{2}}{1+x^{2}}\right) .
$$

1) f is well defined if and only if, $\quad-1 \leqslant \frac{1-x^{2}}{1+x^{2}} \leqslant 1$ note that:

$$
\begin{aligned}
1-\left(\frac{1-x^{2}}{1+x^{2}}\right)^{2} & =\frac{\left(1+x^{2}\right)^{2}-\left(1-x^{2}\right)^{2}}{\left(1+x^{2}\right)^{2}} \\
& =\frac{4 x^{2}}{\left(1+x^{2}\right)^{2}} \geqslant 0
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\forall x \in \mathbb{R}, \quad\left(\frac{1-x^{2}}{1+x^{2}}\right)^{2} \leqslant 1 & \Longrightarrow\left|\frac{1-x^{2}}{1+x^{2}}\right| \leqslant 1 \\
& \Longrightarrow-1 \leqslant \frac{1-x^{2}}{1+x^{2}} \leqslant 1
\end{aligned}
$$

Hence, f is well defined and continuous on \mathbb{R}.
2) f is differentiable if and only if, $-1<\frac{1-x^{2}}{1+x^{2}}<1$

From previous question, we have

$$
1-\left(\frac{1-x^{2}}{1+x^{2}}\right)^{2}=\frac{4 x^{2}}{\left(1+x^{2}\right)^{2}}>0, \quad \text { for } x \in \mathbb{R}^{*}
$$

Thus,

$$
\forall x \in \mathbb{R}^{*},-1<\frac{1-x^{2}}{1+x^{2}}<1
$$

Hence f is differentiable on \mathbb{R}^{*}.
To simplify the calculation of the derivative, we put: $u(x)=\frac{1-x^{2}}{1+x^{2}}$, so $f(x)=\arcsin (u(x))$
we have

$$
f^{\prime}(x)=\frac{u^{\prime}(x)}{\sqrt{1-(u(x))^{2}}}
$$

On the other hand,

$$
u^{\prime}(x)=\frac{-4 x}{\left(1+x^{2}\right)^{2}}
$$

Thus,

$$
f^{\prime}(x)=\frac{-4 x}{\left(1+x^{2}\right)^{2}} \cdot \frac{1}{\sqrt{1-\left(\frac{1-x^{2}}{1+x^{2}}\right)^{2}}}=\frac{-4 x}{\left(1+x^{2}\right)^{2}} \cdot \frac{1+x^{2}}{2|x|}
$$

Then, $f^{\prime}(x)=\frac{-2 x}{|x|\left(1+x^{2}\right)}, \quad x \neq 0$.
3) Find $\lim _{x \rightarrow+\infty} f(x)$:we have

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \arcsin (u(x))
$$

such that $\lim _{x \rightarrow+\infty} u(x)=\lim _{x \rightarrow+\infty} \frac{1-x^{2}}{1+x^{2}}=-1$
Thus,

$$
\lim _{x \rightarrow+\infty} f(x)=\arcsin (-1)=\frac{-\pi}{2} .
$$

Solution $4 \mid$

1) Find:

$$
\cosh \left(\frac{1}{2} \ln (3)\right) \text { and } \quad \sinh \left(\frac{1}{2} \ln (3)\right) .
$$

We have: $\quad \cosh (x)=\frac{e^{x}+e^{-x}}{2}$, so

$$
\cosh \left(\frac{1}{2} \ln (3)\right)=\frac{e^{\frac{1}{2} \ln (3)}+e^{-\frac{1}{2} \ln (3)}}{2}=\frac{\sqrt{3}+\frac{1}{\sqrt{3}}}{2}=\frac{2 \sqrt{3}}{3}
$$

and $\quad \sinh x=\frac{e^{x}-e^{-x}}{2}$, hence

$$
\sinh \left(\frac{1}{2} \ln (3)\right)=\frac{e^{\frac{1}{2} \ln (3)}-e^{-\frac{1}{2} \ln (3)}}{2}=\frac{\sqrt{3}-\frac{1}{\sqrt{3}}}{2}=\frac{\sqrt{3}}{3} .
$$

2) Using the formula: $\cosh (x+y)=\cosh (x) \cosh (y)+\sinh (x) \sinh (y)$.
1. Solve the equation: $2 \cosh (x)+\sinh (x)=\sqrt{3} \cosh (5 x)$

$$
\begin{aligned}
2 \cosh (x)+\sinh (x)=\sqrt{3} \cosh (5 x) & \Longleftrightarrow 2 \frac{\sqrt{3}}{3} \cosh (x)+\frac{\sqrt{3}}{3} \sinh (x)=\sqrt{3} \frac{\sqrt{3}}{3} \cosh (5 x) \\
& \Longleftrightarrow \cosh \left(\frac{1}{2} \ln (3)\right) \cosh (x)+\sinh \left(\frac{1}{2} \ln (3)\right) \sinh (x)=\cosh (5 x) \\
& \Longleftrightarrow \cosh \left(\frac{1}{2} \ln (3)+x\right)=\cosh (5 x)
\end{aligned}
$$

Therefore, since cosh is even function :

$$
\left\{\begin{array} { l }
{ \frac { 1 } { 2 } \operatorname { l n } (3) + x = 5 x } \\
{ \frac { 1 } { 2 } \operatorname { l n } (3) + x = - 5 x }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ 4 x = \frac { 1 } { 2 } \operatorname { l n } (3) } \\
{ 6 x = - \frac { 1 } { 2 } \operatorname { l n } (3) }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x=\frac{1}{8} \ln (3) \\
x=-\frac{1}{12} \ln (3)
\end{array}\right.\right.\right.
$$

2. Simplify the expression :
$\cosh (2 \operatorname{arsinh}(x))$.

$$
\begin{aligned}
\cosh (2 \operatorname{arsinh}(x)) & =\cosh (\operatorname{arsinh}(x)+\operatorname{arsinh}(x)) \\
& =\cosh (\operatorname{arsinh}(x)) \cosh (\operatorname{arsinh}(x))+\sinh (\operatorname{arsinh}(x)) \sinh (\operatorname{arsinh}(x)) \\
& =\cosh ^{2}(\operatorname{arsinh}(x))+\sinh ^{2}(\operatorname{arsinh}(x))
\end{aligned}
$$

We know that : $\forall x \in \mathbb{R}, \sinh (\operatorname{arsinh}(x))=x$ which implies that

$$
\begin{equation*}
\sinh ^{2}(\operatorname{arsinh}(x))=x^{2} \ldots \ldots \ldots(1 \tag{1}
\end{equation*}
$$

Furthermore, we have $\cosh ^{2}(u)-\sinh ^{2}(u)=1 \Longrightarrow \cosh ^{2}(u)=1+\sinh ^{2}(u)$ hence,

$$
\begin{equation*}
\cosh ^{2}(\operatorname{arsinh}(x))=1+\sinh ^{2}(\operatorname{arsinh}(x))=1+x^{2} \tag{2}
\end{equation*}
$$

From (1) and (2), we obtain : $\cosh (2 \operatorname{arsinh}(x))=1+2 x^{2}$.

Solution 51

1. Prove that : $\operatorname{artanh}(x)=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$ for $\left.x \in\right]-1,1[$

Let $y=\operatorname{artanh}(x)$, then

$$
\begin{aligned}
y=\operatorname{artanh}(x) & \Longrightarrow \tanh (y)=x \\
& \Longrightarrow \frac{e^{y}-e^{-y}}{e^{y}+e^{-y}}=x \\
& \Longrightarrow x\left(e^{y}+e^{-y}\right)=e^{y}-e^{-y} \\
& \left.\Longrightarrow x\left(e^{2 y}+1\right)=e^{2 y}-1 \quad \text { (multiply both sides by } e^{y}\right) \\
& \Longrightarrow e^{2 y}(1-x)=(1+x) \\
& \Longrightarrow e^{2 y}=\frac{1+x}{1-x} \\
& \Longrightarrow y=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)
\end{aligned}
$$

Therefore, $\operatorname{artanh}(x)=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$ for $\left.x \in\right]-1,1[$
2. Solve the equation $\operatorname{artanh}(x)=\ln (3)$

$$
\begin{aligned}
\operatorname{artanh}(x)=\ln (3) & \Longrightarrow \frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)=\ln (3) \\
& \Longrightarrow \ln \left(\frac{1+x}{1-x}\right)=\ln (9) \\
& \Longrightarrow \frac{1+x}{1-x}=9 \\
& \Longrightarrow 10 x=8 \\
& \Longrightarrow x=\frac{4}{5}
\end{aligned}
$$

Therefore, $\operatorname{artanh}\left(\frac{4}{5}\right)=\ln (3)$

