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Introduction

The objective of this course is to provide students with a fundamental understanding of math-

ematical logic and proof techniques. In this chapter, we will first focus on the procedure of

forming propositions through logical connectives. Following that, we will delve into the explo-

ration of proof techniques.
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Logic & proof 1 PROPOSITION

1 Proposition

Definition 1.1
A proposition is a mathematical statement that can be either true or false, but it cannot be

both.

Examples : We usually use letters to denote proposition P, Q, . . .

Propositions

P1 : Four is even

P2 : 1= 0

P3 : Triangle has three sides

Not Propositions

Q1 : can you pass the sheet of paper

Q2 : 3+6

Q3 : for all real x, (2x+1)e−x

Remark 1. The trurh or falsity of a proposition is called its truth value.

The two truth values of a proposition are «true» which denoted by " T " and «false» which

denoted by " F ". These can be visualized in a table called a truth table, which helps determine

the validity of certain propositions based on the truth values of other propositions. Therefore,

to describe a proposition, we create its truth table as follows:

P

T

F

Remark 2. Two propositions are equivalent if they have the same truth table, and we denote

this by P ⇐⇒Q. (equivalence is to logic as equality is to algebra.)

P Q

T T

F F

1.1 Logical Operations

Let P be a proposition and Q be another proposition, we usually combine simple statements P

and Q into compound statements to create a new proposition based on logical connectives

(∧,∨,⇐⇒,=⇒) which we will see below :

Definition 1.2 (Negation)

If P is a proposition, its negation not (P) denoted P, is true when P is false and false when

P is true.
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Logic & proof 1 PROPOSITION

The truth table

P P̄

T F

F T

Examples

Q : "Today is Friday", its negation Q : "Today is not Friday"

P : 10> 23 is true, while its negation P : 10É 23 is false.

Rules regarding negation

Let x and y be two variables :

1. x É y⇐⇒ x > y

2. x < y⇐⇒ x Ê y

3. x = y⇐⇒ x 6= y

Definition 1.3 (Disjunction)
If P and Q are propositions, their disjunction, Por Q denoted P∨Q, is true if at least one of

the propositions P or Q is true and false if P and Q are false.

The truth table:

P Q P ∨ Q

T T T

F T T

T F T

F F F

Examples

1/ P : 1+3= 6, Q : 10> 23

P ∨Q : (1+3= 6)∨ (
10> 23) it is true because Q is true.

2/ (Z⊂N) or (2 is a prime numbre)

Definition 1.4 (Conjunction)
If P and Q are propositions, their conjunction, P and Q denoted P ∧Q, is true only if both

P and Q are true, otherwise, it is false.
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Logic & proof 1 PROPOSITION

The truth table :

P Q P ∧ Q

T T T

F T F

T F F

F F F

Examples

1/
(
sin(

π

3
)= 1

2

)
and

(p
3 ∈Q

)
2/ (1+5= 6)∧ (2×3= 6)

Definition 1.5 (Implication)

If P and Q are propositions, the proposition P ∨Q is called implication, denoted by P =⇒Q

which is read as 88 P implies Q ′′ or 88 if P, then Q ′′. It is only false when P is true and Q is

false; otherwise it is true.

The truth table :

P Q P =⇒ Q

T T T

F T T

T F F

F F T

Examples

1. If I pass the final, then I’ll graduate.

2. if x Ê 0, then the function f (x)=p
x is well defined.

3. (2+3= 7)=⇒ (
p

2= 2) .

Definition 1.6 (Equivalence)
If P and Q are propositions, P and Q are equivalent if (P =⇒ Q and Q =⇒ P ), which is

denoted by (P ⇐⇒Q) and read as P if and only if Q. The equivalence is true when P and Q

are the same, i.e. both are false or both are true.
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Logic & proof 2 QUANTIFIERS

The truth table :

P Q P =⇒ Q Q =⇒ P P ⇐⇒Q

T T T T T

F T T F F

T F F T F

F F T T T

Examples:

1. (z ∈C, z = z̄)⇐⇒ z ∈R

2. x2 = 1⇐⇒ (x = 1) or (x =−1)

1.2 Basic Logical Laws

Let P, Q and R be logical propositions:

1. Commutative Laws

(a) (P ∧Q)⇐⇒ (Q∧P)

(b) (P ∨Q)⇐⇒ (Q∨P)

3. Associative Laws

(a) P ∧ (Q∧R)⇐⇒ (P ∧Q)∧R

(b) P ∨ (Q∨R)⇐⇒ (P ∨Q)∨R

2. Distributive Laws

(a) P ∧ (Q∨R)⇐⇒ (P ∧Q)∨ (P ∧R)

(b) P ∨ (Q∧R)⇐⇒ (P ∨Q)∧ (P ∨R)

4. DeMorgan’s Laws

(a)
[

P ∨Q
]
⇐⇒

[
P ∧Q

]
(b)

[
P ∧Q

]
⇐⇒

[
P ∨Q

]
5. Contrapositive : [P =⇒Q]⇐⇒

[
Q =⇒ P

]
6.

[
P ⇐⇒Q

]
⇐⇒

[
P ∧Q

]
∨

[
Q∧P

]
7.

[
P =⇒Q

]
⇐⇒

[
P ∧Q

]
8. (P)⇐⇒ P

2 Quantifiers

The statement (x > 1) is not complete, because it contains a variable x, and we cannot answer

the question: the statement (x > 1) is it true? because the answer depends on x. So, the
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Logic & proof 2 QUANTIFIERS

proposition depending on a variable x is complete if the variable is quantified by a quantifiers

∀ or ∃.

Let P(x) be a proposition depending on a variable x, where x is an element of a set E.

2.1 Universal Quantifier ∀
The universal Quantifier ∀ is used to express that the formula following holds for all values

of the particular variable quantified.

The notation is : ∀x,P(x), meaning " for all x,P(x) is true ".

Examples :

1. ∀x ∈R, x2 +1> 0 meaning : for all real numbers x, x2 +1 is strictly positive.

2. ∀x ∈ [1,+∞[, (x2 > 1) .

3. ∀x ∈R, (x2 > 1) .

2.2 Existential Quantifier ∃
The existential quantifier ∃ expresses that the formula following holdes for some (at least

one) value of that quantified variable.

The notation is : ∃x,P(x), meaning " there is at least one x,P(x) is true ".

Examples :

1. ∃x ∈]0,+∞[, x2−6x+1= 0 meaning : there exists at least one real x strictly positive such

that x2 −6x+1 equals 0.

2. ∃x ∈R, (x2 =−1).

3. ∃x ∈R, (x(x−1)< 0).

Remark 3. The notation ∃! is called uniqueness quantifier states that "there exists a unique".

• ∃!n ∈ N∗,
n(n+1)

2
= 3 states : there exists a unique natural number n 6= 0 shuch that

n(n+1)
2

equals 3 .
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2.3 Quantifiers Order

When quantifiers in the same proposition are of the same quantity ( all universal or all exis-

tential), the order in which they occur does not matter. But when they are mixed, the order

becomes crucial. we show two cases :

• case 1 : ∀x,∃y states that y depends on x.

• case 2 : ∃x,∀y states that x is not related to y.

Example

1. ∀x ∈Z, ∃y ∈Z, x+ y= 0 (True)

We can find y that makes x+ y= 0, for all integers x there exists y such that: y= 5− x.

2. ∃y ∈Z,∀x ∈Z, x+ y= 0 (False)

There is no y that will make x+ y= 0, for all integers x.

3. ∃M ∈R,∀n Ê 1,
1

n+1
É M

there exists at least one real M which is not related to n such that for all n greater than

or equal to 1,
1

n+1
É M. Indeed, ∃M = 1

2
, ∀n Ê 1,

1
n+1

É 1
2

Negation of Quantified Propositions
When we negate a quantified proposition, the existential and universal quantifiers comple-

ment one another.

1. ∀x ∈ E,P(x)⇐⇒∃x ∈ E,P(x).

2. ∃x ∈ E,P(x)⇐⇒∀x ∈ E,P(x).

3. ∀x ∈ E,∃y ∈ E, p(x, y)⇐⇒∃x ∈ E,∀y ∈ E,P(x, y).

4. ∃x ∈ E,∀y ∈ E, p(x, y)⇐⇒∀x ∈ E,∃y ∈ E,P(x, y).

3 Proof Techniques

Mathematical statements can typically be phrased as an implication P =⇒ Q, and we have

many ways to prove it. One of the following modes is used :

3.1 Direct Proof

Direct proof is the simplest and easiest method of proof available to us, There are only two

steps :
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Logic & proof 3 PROOF TECHNIQUES

1. Assume that P is true.

2. Use P to show that Q must be true.

Example prove that ∀a,b ∈Q=⇒ a+b ∈Q.

Proof :

let a ∈Q and b ∈Q. The set of all rational numbers Q are defined as
p
q

with p ∈Z and q ∈N∗.

Write a = p
q

with p ∈Z, q ∈N∗. and b = p′

q′ with p′ ∈Z, q′ ∈N∗.

Now

a+b = p
q
+ p′

q′ =
pq′+ qp′

qq′

Where, the numerator pq′+ qp′ is an element of Z; and the denominator qq′ is an element of

N∗. So a+b is written as a+b = p′′

q′′ with p′′ = pq′+ qp′ ∈Z, and q′′ = qq′ ∈N∗. Thus a+b ∈Q.

3.2 Proof by Exhaustion

Proof by exhaustion ( also known as Proof by Cases) is the proof that something is true by

showing that it is true for each and every case that could possibly be considered. We can

generalise the method of proof by exhaustion using two steps:

1. Establish the cases that apply to the statement.

2. Prove that the statement is true for each case. Each case of the statement needs to

be proved separately, one by one. We need to exhaust all of the cases to verify the

statement.

Example

Show that ∀n ∈N=⇒ n(n+1)
2

∈N.

Proof :

Step 1: Split the statement into a finite number of cases. Thus we can write n = 2k or n = 2k+1,

with k being any natural number.

Step 2: Now prove that the statement is true for each case.

case 1: n is even, ∃k ∈N such as n = 2k =⇒ 2k(2k+1)
2

= k(2k+1) ∈N.

case 2: n is odd, ∃k ∈N such as n = 2k+1 =⇒ (2k+1)(2k+1)+1
2

= (2k+1)(2k+2)
2

= (2k+
1)(2k+1) ∈N
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As both cases satisfy the statement, we have proved that the given statement is correct.

Exercice : Show that, if n is a positive integer, then n(n4–1) is divisible by 2.

3.3 Proof by Contrapositive

Proof by Contrapositive is focused on the following formula :

[P =⇒Q]⇐⇒ [
Q̄ =⇒ P̄

]
So, in order to prove the proposition P =⇒Q, we prove that Q̄ is true, then P̄ is true.

Example for n ∈N. prove that, if n2 is even, then n is even.

Proof :

We prove this proposition by proving its contrapositive statement : if n is odd, then n2 is odd.

As n is odd, So ∃k ∈ N such that n = 2k+ 1. Then n2 = (2k+ 1)2 = 4k2 + 4k+ 1 = 2`+ 1 with

`= 2k2 +2k ∈N. Hence n2 is odd.

Conclusion : By contraposition : if n2 is even, then n is even.

Exercice : Prove that, for all integers a and b, if a+b is odd, then a is odd or b is odd.

Important results

1. n is odd ⇐⇒ n2 is odd.

2. n is even ⇐⇒ n2 is even.

3.4 Proof by Contradiction

A proof by contradiction is a common proof technique that is based on a very simple principle;

something that leads to a contradiction can not be true, and if so, the opposite must be true. It

process as :

1. Assume that P is true and Q is false.

2. Look for a contradiction.

3. State that because of the contradiction, it can’t be the case that the statement is

false, so it must be true.

Example Prove that if ab is irrational, then at least one of a and b are also irrational.
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Proof : Let us assume that ab is irrational, but a and b are rational.

Write a = c
d

, and b = e
f

, with c,d, e, f ∈Z and d, f 6= 0.

Thus ab = ce
d f

, and as c,d, e, f are integers, then this implies that ab is rational, which is a

contradiction.

Consequently, if ab is irrational, then at least one of a and b are also irrational.

Example : Prove that
p

2 is irrational.

Proof : Assume by contradiction, that
p

2 is a rational number. Then there exists p, q ∈ Z, (q 6= 0)

where
p
q
=
p

2 and where
p
q

is in lowest terms, that is, p and q have no common factor other

than 1.

p
q
=
p

2=⇒ p2

q2 = 2

=⇒ p2 = 2q2

=⇒ p2 is an even integer

=⇒ p is an even integer

=⇒ 4 is a factor of p2

=⇒ q2 is an even

=⇒ q is an even

Hence both p and q have a common factor, namely 2, which is a contradiction.

3.5 Proof By Counterexample

This proof structure allows us to prove that a property is not true by providing an example

where it does not hold.

1. State your proposition and what you need to prove clearly.

2. Find a counter example, we can do this by testing examples and eventually we will be

able to find a good example.

Remark 4. When proving by counterexample, it is not enough to state the counterexample. One

must also explain why it is a counterexample.

Example : Prove that : If n is prime, then 2n −1 is prime.

Proof : The case n = 11 is a counterexample, indeed,
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211 −1= 2047= 23×89 is not prime even though n = 11 is prime.

Exercice : Give a counterexample to disprove the statement :

• All even numbers are not prime.

3.6 Proof by Induction

Proof by induction is a very powerful method in which we use recursion to demonstrate an

infinite number of facts in a finite amount of space. Let the proposition P(n),n Ê n0 be true for

n ∈N. The method of proof by Induction follow three steps :

1. base case Show that P(n0) is true for the initial value of n.

2. induction hypothesis Assume that P(n) is true for some n, and show that this

implies that P(n+1) is true.

3. induction step Then, by the principle of induction, P(n) is true for all n ∈N.

Example proves that, for all n ∈N, 2n > n.

Proof : for n Ê 0, let P(n) be the statement that

2n > n.

We will show that P(n) is true for all n Ê 0.

base case: When n = 0 we have 20 = 1> 0. So P(0) is true.

Induction hypothesis: Assume that P(n) is true for some positive integer n. We will prove

that P(n+1) is true.

2n+1 = 2n +2n > n+2n because from P(n) we have 2n > n

> n+1 because 2n Ê 1

Then P(n+1) is true.

Induction step: by mathematical induction P(n) is true for all n Ê 0, ie 2n > n for all n Ê 0

Exercices Prove by induction that :

• 1+2+3+ ...+n = n(n+1)
2

for every positive integer n.

• 9n −1 is divisible by 8 for all non-negative integers.
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The students wishing to delve deeper and practice more exercices is invited to consult these

references :
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