University of Batna 2
Institute of Industrial Hygiene and Safety

Module : Math 1 (L1)
Dr.Bayarassou

Chapter 3 : Real Functions of One Real Variable

Introduction

This chapter is devoted to the functions of a real variable which are often modeled for the study of curves and mechanical calculations. In this regard, we present the foundations of the functions of a real variable, where the objective is to know and interpret the notion of the limit, continuity and derivability of a function, and to present some of their properties.

Contents

Introduction 1
1 Limits 2
1.1 Limit at a Point 2
1.2 Operations on Limits 3
1.3 Evaluating Limits in Indeterminate Form 4
2 Continuity 7
2.1 Continuity at Point 7
2.2 Operations on Continuity 8
2.3 Intermediate Value Theorem (IVT) 9
3 Derivability 10
3.1 Derivability at a Point 10
3.2 Operations on derivative 11
3.3 Rolle's Theorem 14

Real function

The concept of a function is the fundamental concept of calculus and analysis. Real function f of one real variable is a mapping from the set $D \subseteq \mathbb{R}$, a subset in real numbers \mathbb{R}, to the set of all real numbers \mathbb{R}.

$$
f: D \rightarrow \mathbb{R}, \quad x \longmapsto f(x)
$$

- D is the domain of the function f, where $D=\{x \in \mathbb{R}, f(x)$ makes sense $\}$

1 Limits

Limits are used to analyze the local behavior of functions near points of interest. A function f is said to have a limit ℓ at x_{0} if it is possible to make the function arbitrarily close to ℓ by choosing values closer and closer to x_{0}. Note that the actual value at x_{0} is irrelevant to the value of the limit.

The notation is as follows:

$$
\lim _{x \rightarrow x_{0}} f(x)=\ell
$$

which is read as "the limit of $f(x)$ as x approaches x_{0} is ℓ "

1.1 Limit at a Point

We consider values of a function that approaches a value from either inferior or superior.

- The left-hand limit of a function f as it approaches x_{0} is the limit

$$
\lim _{x \rightarrow x_{0}^{-}} f(x)=\ell
$$

Which indicates that the limit is defined in terms of a number less than the given number x_{0}.

- The right-hand limit of a function f as it approaches x_{0} is the limit

$$
\lim _{x \rightarrow x_{0}^{+}} f(x)=\ell
$$

Which indicates that the limit is defined in terms of a number greater than the given number x_{0}.

- $\lim _{x \rightarrow x_{0}} f(x)=\ell$ if and only if both the left- hand and right-hand limits at $x=x_{0}$ exist and share the same value.

$$
\lim _{x \rightarrow x_{0}^{-}} f(x)=\ell=\lim _{x \rightarrow x_{0}^{+}} f(x) .
$$

Example : Compute the limit: $\lim _{x \rightarrow 0}|x|$

- The right-hand limit at $x=0: \lim _{x \rightarrow 0^{+}}|x|=\lim _{x \rightarrow 0^{+}} x=0$
- The left-hand limit at $x=0: \lim _{x \rightarrow 0^{-}}|x|=\lim _{x \rightarrow 0^{-}}-x=0$

So the right-hand and left-hand limits are equal. Then $\lim _{x \rightarrow 0}|x|=0$

Infinite Limits

- If a function is defined on either side of x_{0}, but the limit as x approaches x_{0} is infinity or negative infinity, then the function has an infinite limit, we write

$$
\lim _{x \rightarrow x_{0}} f(x)=\infty
$$

-The graph of the function will have a vertical asymptote at x_{0}.

Limits at Infinity

- Limits at infinity are used to describe the behavior of functions as the independent variable increases or decreases without bound. we write

$$
\lim _{x \rightarrow \pm \infty} f(x)=\ell
$$

- The graph of the function will have a horizontal asymptote at $y=\ell$.

1.2 Operations on Limits

\bigcirc Assume that $\lim _{x \rightarrow x_{0}} f(x)=\ell \in \mathbb{R}, \lim _{x \rightarrow x_{0}} g(x)=m \in \mathbb{R}$ and $c \in \mathbb{R}$. Therefore :

$\lim _{x \rightarrow x_{0}} f(x)$	$\lim _{x \rightarrow x_{0}} g(x)$	$\lim _{x \rightarrow x_{0}}(f+g)(x)$	$\lim _{x \rightarrow x_{0}}(f \times g)(x)$
ℓ	m	$\ell+m$	$\{\times m$
$+\infty$	m	$+\infty$	$\begin{cases}+\infty & \text { Si } m>0 \\ -\infty & \text { Si } m<0 \\ \text { Indeterminate } & \text { Si } m=0\end{cases}$
$-\infty$	m	$-\infty$	$\begin{cases}-\infty & \text { Si } m>0 \\ +\infty & \text { Si } m<0 \\ \text { Indeterminate } & \text { Si } m=0\end{cases}$
$+\infty$	$+\infty$	$+\infty$	$+\infty$
$-\infty$	$-\infty$	$-\infty$	$+\infty$
$-\infty$	$+\infty$	Indeterminate	$-\infty$

$\bigcirc \lim _{x \rightarrow x_{0}} c f(x)=c \lim _{x \rightarrow x_{0}} f(x)=c \ell$
$\bigcirc \lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow x_{0}} f(x)}{\lim _{x \rightarrow x_{0}} g(x)}=\frac{\ell}{m}$ if $m \neq 0$
\bigcirc Limit of Composition : Suppose that $\lim _{x \rightarrow x_{0}} g(x)=\ell$ and $\lim _{x \rightarrow \ell} f(x)=\ell^{\prime}$, then

$$
\lim _{x \rightarrow x_{0}} f(g(x))=\ell^{\prime}
$$

Comparative Growth

Suppose that f and g are two functions such that $\lim _{x \rightarrow+\infty} f(x)=+\infty$, and $\lim _{x \rightarrow+\infty} g(x)=+\infty$. We say that f grows faster than g as $x \rightarrow+\infty$ if the following holds:

$$
\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}=+\infty \quad \text { or equivalently, } \quad \lim _{x \rightarrow+\infty} \frac{g(x)}{f(x)}=0
$$

Results:

- Exponential functions grow faster than every polynomial functions and polynomial functions grow faster than logarithmic functions. Let n be positive number:

1. $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n}}=\infty \quad$ and, $\lim _{x \rightarrow \infty} \frac{x^{n}}{e^{x}}=0$
2. $\lim _{x \rightarrow \infty} \frac{x^{n}}{\ln (x)}=\infty \quad$ and, $\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{n}}=0$

Indeterminate Form

An indeterminate form is an expression involving two functions whose limit cannot be determined solely from the limits of the individual functions.

$$
+\infty-\infty, \quad 0 . \infty, \quad \frac{\infty}{\infty}, \quad \frac{0}{0}
$$

1.3 Evaluating Limits in Indeterminate Form

We present some methods that allows us to transform an indeterminate form into one that allows for direct evaluation.

- Polynomial function as $x \rightarrow \pm \infty$ with indeterminate form $+\infty-\infty$

Factor out the highest power of x in the polynomial function.

Example:

Find $\lim _{x \rightarrow+\infty}-2 x^{3}+4 x-1$,
We write, $\lim _{x \rightarrow+\infty}-2 x^{3}\left(1-\frac{2}{x^{2}}+\frac{1}{2 x^{3}}\right.$. Thus, $\lim _{x \rightarrow \infty}-2 x^{3}=-\infty$ and $\lim _{x \rightarrow \infty}\left(1-\frac{2}{x^{2}}+\frac{1}{2 x^{3}}\right)=1$ Therefore, $\lim _{x \rightarrow+\infty}-2 x^{3}+4 x-1=\lim _{x \rightarrow+\infty}-2 x^{3}=-\infty$.

- Rational function as $x \rightarrow \pm \infty$ with indeterminate form $\frac{\infty}{\infty}$

Divide out the highest power of x in both the numerator and denominator.
Example: $\lim _{x \rightarrow+\infty} \frac{x^{2}-1}{x+3}$. Both numerator and denominator approach $+\infty$ as $x \rightarrow+\infty$. Thus

$$
\lim _{x \rightarrow+\infty} \frac{x^{2}-1}{x+3}=\lim _{x \rightarrow+\infty} \frac{x^{2}\left(1-\frac{1}{x^{2}}\right)}{x\left(1+\frac{3}{x}\right)}=+\infty
$$

- Factoring Method ($\frac{0}{0}$ form)

Factoring method is a technique to finding limits that works by canceling out common factors.

Example:

Find $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$
Using the substitution rule gives $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=\frac{0}{0}$
find the common divisor which is $(x-3)$ and divide both the numerator and denominator by it,

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3} & =\lim _{x \rightarrow 3} \frac{(x-3)(x+3)}{x-3} \\
& =\lim _{x \rightarrow 3}(x+3) \\
& =6
\end{aligned}
$$

- L'Hospital's Rule ($\frac{0}{0}$ or $\frac{\infty}{\infty}$ form $)$

Suppose f and g are differentiable and $g^{\prime}(x) \neq 0$ near x_{0} (except possibly at x_{0}). Suppose that

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\frac{0}{0}, \text { or } \quad \lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\frac{ \pm \infty}{ \pm \infty}
$$

Then,

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)} .
$$

Example:

Find $\lim _{x \rightarrow-2} \frac{x+2}{x^{2}+3 x+2}$
Using the substitution rule gives $\lim _{x \rightarrow-2} \frac{x+2}{x^{2}+3 x+2}=\frac{0}{0}$. Apply L'Hospital's Rule

$$
\begin{aligned}
\lim _{x \rightarrow-2} \frac{x+2}{x^{2}+3 x+2} & =\lim _{x \rightarrow-2} \frac{(x+2)^{\prime}}{\left(x^{2}+3 x+2\right)^{\prime}} \\
& =\lim _{x \rightarrow-2} \frac{1}{2 x+3} \\
& =-1
\end{aligned}
$$

- Conjugate multiplication

This method useful for fraction functions that contain square roots. It rationalizes the numerator or denominator of a fraction, which means getting rid of square roots.

Example :

Evaluate $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}$
By substitution, we find : $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}=\frac{0}{0}$
Multiply the numerator and denominator by the conjugate of $\sqrt{x}-2$ which is $\sqrt{x}+2$, we obtain

$$
\begin{aligned}
\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4} & =\lim _{x \rightarrow 4} \frac{(\sqrt{x}-2)(\sqrt{x}+2)}{(x-4)(\sqrt{x}+2)} \\
& =\lim _{x \rightarrow 4} \frac{x-4}{(x-4)(\sqrt{x}+2)} \\
& =\lim _{x \rightarrow 4} \frac{1}{\sqrt{x}+2} \quad(\text { Cancel the }(x-4)) \\
& =\frac{1}{4}
\end{aligned}
$$

Alternative methods to evaluate limits

- Squeeze Theorem

Suppose that $g(x) \leqslant f(x) \leqslant h(x)$ for all x close to x_{0} but not equal to x_{0}. If $\lim _{x \rightarrow x_{0}} g(x)=\ell=$ $\lim _{x \rightarrow x_{0}} h(x)$, then

$$
\lim _{x \rightarrow x_{0}} f(x)=\ell
$$

The quantity x_{0} and ℓ may be a finite number or $\pm \infty$.
Results: we represent two important limits :

$$
\lim _{x \rightarrow+\infty} \frac{\sin (x)}{x}=0, \quad \lim _{x \rightarrow+\infty} \frac{1-\cos (x)}{x}=0
$$

- Monotone Limits

Suppose that the limits of f and g both exist as $x \rightarrow x_{0}$. if $f(x) \leqslant g(x)$ when x is near x_{0}, then

$$
\lim _{x \rightarrow x_{0}} f(x) \leqslant \lim _{x \rightarrow x_{0}} g(x)
$$

Some Special Limits

$$
\begin{gathered}
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1, \quad \lim _{x \rightarrow 0} \frac{\tan (x)}{x}=1, \quad \lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}}=\frac{1}{2} \\
\lim _{x \rightarrow 0} \frac{\ln (x+1)}{x}=1, \quad \lim _{x \rightarrow 0} \frac{\exp (x)-1}{x}=1
\end{gathered}
$$

2 Continuity

Continuous functions are functions that take nearby values at nearby points.

2.1 Continuity at Point

Definition 2.1

- Let $I \subseteq \mathbb{R}$ and $f: I \rightarrow \mathbb{R}$ be a function. we say that f is continuous at a point $x_{0} \in I$ if,

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)
$$

Otherwise, f is said to be discontinous at x_{0}.

- We say that f is continuous on I if f is continuous at every point of I.

Checking Continuity at a Point

A function f is continuous at $x=x_{0}$ if the following three conditions hold:

1. $f\left(x_{0}\right)$ is defined (that is, x_{0} belongs to the domain of f)
2. $\lim _{x \rightarrow x_{0}} f(x)$ exists (that is, left-hand limit $=$ right-hand limit)
3. $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$

One-sided continuity :

- f is left continuous at a point x_{0} if, $\lim _{x \rightarrow x_{0}^{-}} f(x)=f\left(x_{0}\right)$
- f is right continuous at a point x_{0} if, $\lim _{x \rightarrow x_{0}^{+}} f(x)=f\left(x_{0}\right)$
- f is continuous at x_{0} if and only if these two limits exist and are equal.

$$
\lim _{x \rightarrow x_{0}^{-}} f(x)=f\left(x_{0}\right)=\lim _{x \rightarrow x_{0}^{+}} f(x)
$$

Remark 1

O Every polynomial function is continuous on \mathbb{R}.
O Every rational function is continuous on its domain.
$\bigcirc \sin$ and \cos are continuous everywhere on \mathbb{R}
\bigcirc The square root is continuous on \mathbb{R}^{+}

2.2 Operations on Continuity

The basic properties of continuous functions follow from those of limits:
If $f: I \rightarrow \mathbb{R}$ and $g: I \rightarrow \mathbb{R}$ are continuous at x_{0} of I, and λ is a constant, then :

1. $f+g$ is continuous at x_{0}
2. λf is continuous at x_{0}
3. $f g$ is continuous at x_{0}
4. If $f\left(x_{0}\right) \neq 0$, then $\frac{1}{f}$ is continuous at x_{0}.

Theorem 1 Let $f: I \rightarrow \mathbb{R}$ and $g: J \rightarrow \mathbb{R}$ two functions such that $f(I) \subseteq J$. If f is continuous at x_{0} of I and if g is continuous at $f\left(x_{0}\right)$, then $g \circ f$ is continuous at x_{0}.

Example :

Determine whether $h(x)=\cos \left(x^{2}-5 x+2\right)$ is continuous.
Note that, $h(x)=f(g(x))$, where $f(x)=\cos (x)$ and $g(x)=x^{2}-5 x+2$
Since both f and g are continuous for all x, then h is continuous for all x.
Continuous extension : When we can remove a discontinuity by redefining the function at that point, we call the discontinuity removable. (Not all discontinuities are removable, however.)

If $\lim _{x \rightarrow x_{0}} f(x)=\ell$, but $f\left(x_{0}\right)$ is not defined, we define a new function

$$
\tilde{f}(x)= \begin{cases}f(x) & \text { for } x \neq x_{0} \\ \ell & \text { for } x=x_{0}\end{cases}
$$

which is continuous at x_{0}. It is called the continuous extension of $f(x)$ to x_{0}.

Example :

Show that the following function have continuous extension, and find the extension :

$$
f(x)=\frac{x^{2}-1}{x^{3}+1}, \quad \text { for } x \neq-1
$$

Here $f(-1)$ has not been defined.

$$
\begin{aligned}
\lim _{x \rightarrow-1} \frac{x^{2}-1}{x^{3}+1} & =\lim _{x \rightarrow-1} \frac{(x+1)(x-1)}{(x+1)\left(x^{2}-x+1\right)} \\
& =\lim _{x \rightarrow-1} \frac{x-1}{x^{2}-x+1} \\
& =\frac{-2}{3}
\end{aligned}
$$

Thus, $\lim _{x \rightarrow-1} f(x)$ exists, therefore f has a removable discontinuity at $x_{0}=-1$.
Hence, The continuous extension is

$$
\tilde{f}(x)= \begin{cases}\frac{x^{2}-1}{x^{3}+1} & \text { for } x \neq-1 \\ -\frac{2}{3} & \text { for } x=-1\end{cases}
$$

\bigcirc As one consequence of previous results, the image of interval under a continuous function is an interval :

Theorem 2 Let $f: I \rightarrow \mathbb{R}$ be a continuous function on an interval I, then $f(I)$ is an anterval.

I	$f(I)$	
	f is strictly increasing	f is strictly decreasing
$[a, b]$	$[f(a), f(b)]$	$[f(b), f(a)]$
$[a, b[$	$\left[f(a), \lim _{x \rightarrow b^{-}} f(x)[\right.$	$\left.] \lim _{x \rightarrow b^{-}} f(x), f(a)\right]$
$] a, b]$	$\left.] \lim _{x \rightarrow a^{+}} f(x), f(b)\right]$	$\left[f(b), \lim _{x \rightarrow a^{+}} f(x)[\right.$
$] a, b[$	$] \lim _{x \rightarrow a^{+}} f(x), \lim _{x \rightarrow a^{+}} f(x)[$	$] \lim _{x \rightarrow a^{+}} f(x), \lim _{x \rightarrow a^{+}} f(x)[$

Theorem 3 Let $f: I \rightarrow \mathbb{R}$ is the function defined on $I \subseteq \mathbb{R}$. Assume that f is continuous and strictly monotonic on the closed interval I, then

1. f establishes a bijection of the interval I into the image interval $f(I)$.
2. $f^{-1}: f(I) \rightarrow I$ is continuous and strictly monotonic on $f(I)$

2.3 Intermediate Value Theorem (IVT)

The intermediate value theorem describes a key property of continuous functions. It states that a continuous function on an interval takes on all values between any two of its values.

Theorem 4 Let $f:[a, b] \longrightarrow \mathbb{R}$ such that

- f is continuous on the closed interval $[a, b]$
- k be any number between $f(a)$ and $f(b)$.

Then, there exists at least $c \in] a, b[$ such that $f(c)=k$.

The most used version of the intermediate value theorem given as :
Theorem 5 Let $f:[a, b] \longrightarrow \mathbb{R}$ such that

- f is continuous on the closed interval $[a, b]$,
- $f(a) . f(b)<0$

Then, there exists at least $c \in] a, b[$ such that $f(c)=0$.

Example :

Show that the equation $4 x^{3}-6 x^{2}+3 x-2=0$ has a solution in the interval [1,2].
Consider the function $f(x)=4 x^{3}-6 x^{2}+3 x-2$ over the closed interval [1,2]
The function f is a polynomial, therefore it is continuous over [1,2].
We have $f(1)=-1$ and $f(2)=12$, hence $f(1) f(2)<0$
by the Mean-Value-Theorem there exists a value c in the interval $] 1,2[$ such that $f(c)=0$, i.e. there is a solution for the equation $f(x)=0$ in the interval $] 1,2[$.

3 Derivability

3.1 Derivability at a Point

Below, we note I a non-empty interval of \mathbb{R}.

Definition 3.1

Let $f: I \rightarrow \mathbb{R}$ be a function, and let $x_{0} \in I$. we say that f is differentiable at x_{0} if the limit

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

exists, and finite. This limit is called the derivative of f at x_{0}, we note $f^{\prime}\left(x_{0}\right)$.

Remark 2

Alternative formula for the derivative :

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

Geometric interpretation of the derivative :

If f is differentiable at x_{0}, then the curve representing the function f have a tangent to the point $\left(x_{0}, f\left(x_{0}\right)\right)$, with the slope $f^{\prime}\left(x_{0}\right)$.

One-sided derivatives :

In analogy to one-sided limits, we define one-sided derivatives

- The left-hand derivative of a function f at x_{0}

$$
\lim _{x \rightarrow x_{0}^{-}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

- The right- hand derivative of a function f at x_{0}

$$
\lim _{x \rightarrow x_{0}^{+}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

f is differentiable at x_{0} if and only if these two limits exist and are equal.

Example :

Show that $f(x)=|x-1|$ is not differentiable at $x=0$

- The right-hand derivative at $x=0$:

$$
\lim _{x \rightarrow 1^{+}} \frac{|x-1|-0}{x-1} \lim _{x \rightarrow 1^{+}} \frac{x-1}{x-1}=1
$$

- The left-hand derivative at $x=0$:

$$
\lim _{x \rightarrow 1^{-}} \frac{|x-1|-0}{x-1} \lim _{x \rightarrow 1^{+}} \frac{-(x-1)}{x-1}=-1
$$

So the right-hand and left-hand derivatives differ.

Remark 3

We say that a function f is differentiable on an interval I when f is differentiable in any point of I.
Theorem 6 If f has a derivative at $x=a$, then f is continuous at $x=a$.

3.2 Operations on derivative

Let $f, g: I \rightarrow \mathbb{R}$ two functions. We assume that f and g are differentiable of x. Therefore,

1) $f+g$ is differentiable, and

$$
(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)
$$

2) $f g$ is differentiable, and

$$
(f g)^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

3) If $g\left(x_{0}\right) \neq 0$, then $\frac{f}{g}$ is differentiable, and

$$
\left(\frac{f}{g}\right)^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}
$$

Theorem 7 (Derivatives of composite functions) Let $f: I \rightarrow \mathbb{R}$ and $g: J \rightarrow \mathbb{R}$ two functions such that $f(I) \subseteq J$. If f is differentiable of x, and g is differentiable of $f(x)$, then $g \circ f$ is differentiable of x and

$$
(g \circ f)^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)
$$

Common Derivatives

$f(x)$	$f^{\prime}(x)$
$c, c \in \mathbb{R}$	0
$c x, c \in \mathbb{R}$	c
$x^{n}, n \geqslant 1$	$n x^{n-1}$
$\frac{1}{x}$	$\frac{-1}{x^{2}}$
$\frac{1}{x^{n}}, n \geqslant 1$	$\frac{-n}{x^{n+1}}$
\sqrt{x}	$\frac{1}{2 \sqrt{x}}$
$\ln (x), x>0$	$\frac{1}{x}$
e^{x}	e^{x}
$\sin (x)$	$\cos (x)$
$\cos (x)$	$-\sin (x)$
$\sin (c x), c \in \mathbb{R}$	$c \cos (c x)$

Applications of Derivatives

Derivatives have various applications in Mathematics, We'll learn about these two applications of derivatives :

1. Monotonicity of functions

Derivatives can be used to determine whether a function is increasing, decreasing or constant on an interval.

Theorem 8 Let f be a differentiable function on an intervalle I:

1. f is increasing on $I \Longleftrightarrow \forall x \in I, \quad f^{\prime}(x) \geqslant 0$
2. f is decreasing on $I \Longleftrightarrow \forall x \in I, \quad f^{\prime}(x) \leqslant 0$
3. f is constant on $I \Longleftrightarrow \forall x \in I, \quad f^{\prime}(x)=0$

2. Extremum of Functions

An extremum of a function is the point where we get the maximum or minimum value of the function in some interval.

- Let $f: I \rightarrow \mathbb{R}$ be a function, and let $c \in I$. We say that c is a critical point of f if $f^{\prime}(c)=0$ or $f^{\prime}(c)$ is undefined.
Let $f: I \rightarrow \mathbb{R}$ is differentiable, and $c \in I$ be a critical point of f. Then

1. If $f^{\prime}(x)>0$ for all $x<c$ and $f^{\prime}(x)<0$ for all $x>c$, then $f(c)$ is the maximum value of f.
2. If $f^{\prime}(x)<0$ for all $x<c$ and $f^{\prime}(x)>0$ for all $x>c$, then $f(c)$ is the minimum value of f.

Example :

Find the extremum of $f(x)=3 x^{2}-18 x+5$ on $[0,7]$.
First, we find all possible critical points :

$$
\begin{aligned}
& f^{\prime}(x)=0 \\
& 6 x-18=0 \\
& x=3
\end{aligned}
$$

for $x \in\left[0,3\right.$ [, we have $f^{\prime}(x)<0$ and for $\left.\left.x \in\right] 3,7\right]$, we have $f^{\prime}(x)>0$ Then $f(3)=-22$ is the muximun value of f on [0,7].

3.3 Rolle's Theorem

In analysis, special case of the mean-value theorem of differential calculus is Rolle's theorem.
Theorem 9 Let $f:[a, b] \longrightarrow \mathbb{R}$ such that

- f is continuous on the closed interval $[a, b]$,
- f is differentiable on the open interval]a, b[,
- $f(a)=f(b)$.

Then, there exists $c \in] a, b\left[\right.$ such that $f^{\prime}(c)=0$.
Example : Let $g(x)=(1-x) f(x)$
with f is a continuous function on $[0,1]$, differentiable on $] 0,1[$ and verify $f(0)=0$
Show that

$$
\exists c \in] 0,1\left[, \quad f^{\prime}(c)=\frac{f(c)}{1-c}\right.
$$

Apply Rolle's theorem :

1) g is continuous $[0,1]$ because it is the product of two continuous functions on $[0,1]$ (f is a continuous function on $[0,1]$ and $x \longmapsto 1-x$ continuous polynômial on \mathbb{R} hence on $[0,1]$).
2) g is differentiable on $] 0,1$ [since it is the product of two differentiable functions on $] 0,1[$.
3) $g(0)=f(0)=0, \quad g(1)=0 \times f(1)=0$. Hence $g(0)=g(1)$

According to Rolle's theorem: $\exists c \in] 0,1\left[, \quad g^{\prime}(c)=0\right.$.
Where

$$
g^{\prime}(c)=-f(c)+(1-c) f^{\prime}(c)
$$

It follows,

$$
f^{\prime}(c)=\frac{f(c)}{1-c} .
$$

