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Introduction

This chapter is devoted to the elementary functions which appear naturally in the resolution of

simple problems, especially physics issues. In this regard, we present the foundations of these

functions, and some of their properties.
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Elementary Functions & Applications

The Inverse Function Theorem

Theorem 1. Let f be a continuous function and strictly monotonic on an interval I. Then

1. f (I) is an interval denoted J of the same nature as I (closed, open or semi-open) and its

ends are the limits of f at the endpoints of I.

2. The function f admits an inverse function defined on J = f (I); more precisely, f defines a

bijection of the interval I onto the interval J, so there exists a function denoted f −1 from

J into I, such that

x ∈ I, y= f (x) ⇔ y ∈ J, x = f −1(y)

3. The inverse function f −1 is continuous and strictly monotonic on J, with the same sense

of monotonicity as f .

4. If f is differentiable at x0 in I and f ′ (x0) 6= 0, then f −1 is differentiable at y0 = f (x0) and

(
f −1)′ (y0)= 1

f ′ (x0)
= 1

f ′
(
f −1 (y0)

)
5. The graphs of the functions f and f −1 are symmetric with respect to the first bisector y= x.

Example :

We consider the real function f defined on I = ]
0,
p

2
[

by x 7→ f (x)= x3

4− x4

The function f is the quotient of the two functions g and h defined on I by

x 7→ g(x)= x3, x 7→ h(x)= 4− x4.

� The functions g and h are continuous on I and h is not zero on I, we deduce that f is

continuous on I.

� On I, the function g is strictly increasing and positive, the function h is strictly decreas-

ing and positive, then the function
1
h

is strictly increasing and positive. Therefore f is

strictly increasing as the product of two strictly positive increasing functions.

As the function f satisfies the assumptions of the inverse function theorem, we have the fol-

lowing results :

1. f
(]

0,
p

2
[)= ]

lim
x→0

f (x), lim
x→p

2
f (x)

[
d’où f

(]
0,
p

2
[)= ]

0,+∞[
.

2. The function f admits an inverse function, denoted f −1, defined on J = ]
0,+∞[

.

• The function f −1 is continuous on J = ]
0,+∞[

.
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Elementary Functions & Applications

• The function f −1 is strictly increasing on J

• f −1 (]
0,+∞[)= ]

0,
p

2
[

with lim
x→0

f −1(x)= 0 and lim
x→+∞ f −1(x)=

p
2.

Furthermore, the functions g and h being differentiable on I, f is differentiable as the quotient

of two differentiable functions, the denominator function is not zero on I. Its derivative, after

calculations, is the function f ′ : x 7→ x2(12+ x4)
(4− x2)2 .

Then, the function f −1 is differentiable at any point image of a x such that f ′(x) 6= 0.

Hence f −1 is differentiable on ]0,+∞[ and ∀a ∈]0,+∞[, ( f −1)′(a)= 1
f ′( f −1(a))

.

For example, f is defined at 1 and f (1)= 1
3

, so f −1 is differentiable at
1
3

and

( f −1)′(
1
3

)= 1
f ′(1)

= 9
13

Parity :

Let I be an interval of R symmetric with respect to 0 ( i.e. of the form ]−a,a[ or [−a,a] or R).

Let f : I →R be a function defined on I. We say that :

• f is even if ∀x ∈ I, f (−x)= f (x).

• f is odd if ∀x ∈ I, f (−x)=− f (x).

Example :

1)The function f is defined on R by f (x)= 4x2 +5 is even, indeed

For all real x , the real −x also belongs to R and

f (−x)= 4(−x)2 +5= 4x2 +5= f (x)

2) The function g is defined on R∗ by g(x)= 4
x

is odd, indeed

For all real x , the real −x also belongs to R∗ and

g(−x)= 4
−x

=−4
x
=−g(x)

Periodicity :

Let f : I →R be a function and T be a real number, T > 0.

The function f is said to be periodic with period T if ∀x ∈R, f (x+T)= f (x).

Example :

The cosine and sine functions are periodic with period 2π. In other words,

∀x ∈R,∀k ∈Z, cos(x+2kπ)= cos(x) and sin(x+2kπ)= sin(x).
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1 Exponential and Logarithmic Functions

Exponential and logarithmic functions are useful for modeling many phenomena. Logarithmic

functions are particularly involved in evaluating decisions in the presence of risks.

1.1 Exponential function

Definition 1.1

We call exponential function the unique differentiable function on R such that f ′ = f and

f (0)= 1 . We denote this function by

exp :R−→ ]0,+∞[

x 7−→ exp(x)

Remark 1. For x ∈R we also write ex for exp(x).

Operating properties : ∀x, y ∈R,∀n ∈Z :

ex+y = exey, ex−y = ex

ey , exn = (ex)n.

The exponential function satisfies the following properties :

• The exponential function is continuous and differen-

tiable on R and (ex)′ = ex.

• The exponential function is strictly increasing on R.

• lim
x−→−∞ ex = 0 and lim

x−→+∞ ex =+∞

• ∀x ∈R, ex > 0.

Graph of the function exp

1.2 Logarithm function

Definition 1.2
The function exp performs a bijection of R on ]0,+∞[. It is called a logarithm function ln,

and defined as
ln :]0, +∞[−→R

x 7−→ ln(x)

4
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Operating properties : ∀x, y> 0,∀n Ê 1 :

ln(xy)= ln(x)+ ln(y), ln(
x
y

)= ln(x)− ln(y), ln(xn)= n ln(x).

The logarithm function checks the following properties :

• The function ln is continuous and differentiable on

]0,+∞[ and for all x > 0, (ln)′(x)= 1
x

.

• The function ln is strictly increasing on ]0,+∞[.

• lim
x−→0+ ln(x)=−∞ and lim

x−→+∞ ln(x)=+∞ .

Graph of the function ln

Remark : As exp is the inverse of ln. Likewise ln is the inverse of exp, we have:

∀x ∈R, ln(exp(x))= x

∀x ∈ ]0;+∞[ , exp(ln(x))= x

1.3 Exponentials and Logarithms of base a

The exponential function of base a is a bijection of R on R∗
+. Its inverse is given a bijection of

R∗
+ on R. It is called logarithm of base a.

Exponential of base a

For any positive number a > 0, and a 6= 1. An exponential function of base a is defined as

f : R→R∗
+

x 7−→ ax = ex ln(a)

The function x 7−→ ax defined on R to R∗
+ , continuous, differentiable and satisfies:

1. (ax)′ = ax ln(a) for all x ∈R

2. For a > 1, the function x 7−→ ax is strictly increasing and lim
x−→+∞ax =+∞.

3. For 0< a < 1, the function x 7−→ ax is strictly decreasing and lim
x−→+∞ax = 0.

5
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Logarithm of base a

For a > 0, and a 6= 1. A logarithm function of base a is defined as

loga : R∗
+ →R

x 7−→ loga(x)= ln(x)
ln(a)

The function x 7−→ loga(x) defined on R∗
+ to R , continuous, differentiable and satisfies:

1. (loga)′(x)= 1
x ln(a)

for all x > 0.

2. For a > 1, the function x 7−→ loga(x) is strictly increasing.

3. For 0< a < 1, the function x 7−→ loga(x) is strictly decreasing.

1.4 Power Function

Definition 1.3
For all α ∈R, We call power function any function defined on R∗

+ in R∗
+ by

x 7−→ xα = exp(α ln(x)).

Operating properties :

For a and b two reals, x > 0 and y> 0, we have :

xa ya = (xy)a xaxb = xa+b(
xa)b = xab x0 = 1

The power function checks the following properties :

• The function x 7−→ xα is continuous and differen-

tiable on R∗
+ and for all x > 0, (xα)′ =αxα−1

• The function x 7−→ xα is increasing if α> 0, decreas-

ing if α< 0, constant if α= 0.

Graph of function xα
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2 Trigonometric Functions and their Inverses

In the plane provided with an orthonormal co-

ordinate system (O,~i,~j) and oriented in the di-

rect direction, we consider a trigonometric cir-

cle with center O.

For any real number x, let us designate by the

point M on the trigonometric circle such that

the angle between the axis of abscissa Ox and
−−→
OM is equal to x and by H and K its respective

projections on the abscissa axis and to the y-

axis passing through M.
Trigonometric functions are functions that relate an angle in a circle to the ratio of the

sides in a right triangle.

2.1 Cosine and arccosine function

The cosine function

The cosine function is the function defined by cos :R−→ [−1,1] which, to any real x, associates

the real cos(x), where cos(x) designates the abscissa of the point M
(
cos(x)=OH

)
.

The function cosine is differentiable on R and, for all x ∈R, we have

cos′(x)=−sin(x)

Properties

1. ∀x ∈R, −1É cos(x)É 1

2. cos(x)= cos(x+2kπ) where k ∈Z.

3. ∀x ∈R, cos(−x)= cos(x)

4. cos(x)= cos(a)⇐⇒ x = a+2kπ or x =−a+2kπ with k ∈Z.

The arccosine function

The function cos is continuous and strictly decreasing from [0,π] to [−1,1], therefore achieves

a bijection. Thus, it admits an inverse function defined as

arccos : [−1,1]−→ [0,π].

7
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Graph of the function cos Graph of the function arccos

1) The function arccos is continuous and strictly decreasing on [−1,1].

2) The function arccos is differentiable on ]−1,1[ with

∀x ∈]−1,1[,arccos′(x)=− 1p
1− x2

3) The function arccos is not differentiable in ±1, its representative curve admitting at these

points a vertical tangent.

Properties:

1. ∀x ∈ [−1,1], cos(arccos(x))= x.

2. ∀x ∈ [0,π], arccos(cos(x))= x.

3. ∀x ∈]−1,1[, sin(arccos(x))=
√

1− x2.

Example 1.

arccos
(
1
2

)
= π

3

because
π

3
is the only arc between 0 and π whose cosine is

1
2

.

2.2 Sine and arcsine function

The Sine function

The function sine is the function defined by sin : R −→ [−1,1] which, to any real x, associates

the real sin(x), where sin(x) designates the ordinate from point M
(
sin(x)=OK

)
.

The function sine is differentiable on R and, for all x ∈R, we have

sin′(x)= cos(x)

8
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Properties

1. ∀x ∈R, −1É sin(x)É 1

2. sin(x)= sin(x+2kπ) where k ∈Z.

3. ∀x ∈R, sin(−x)=−sin(x)

4. sin(x)= sin(a)⇐⇒ x = a+2kπ or x =π−a+2kπ with k ∈Z.

The arcsine function

The function sin is continuous and strictly increasing on
[
−π

2
,
π

2

]
, so performs a bijection of[

−π

2
,
π

2

]
on [−1,1]. Therefore, it admits an inverse function defined as

arcsin : [−1,1]−→
[
−π

2
,
π

2

]

Graph of function sin
Graph of function arcsin

1) The arcsin function is odd and continues on [−1,1].

2) The function arcsin is differentiable on ]−1,1[ and

∀x ∈]−1,1[, arcsin′(x)= 1p
1− x2

.

3) The function arcsin is not differentiable in ±1, its representative curve admitting at these

points a vertical tangent.

Properties :

1. ∀x ∈ [−1,1], sin(arcsin(x))= x

2. ∀x ∈
[
−π

2
,
π

2

]
, arcsin(sin(x))= x

3. ∀x ∈]−1,1[, cos(arcsin(x))=
√

1− x2.
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2.3 Tangent and arctangent function

The tangent function

We call the tangent function the function defined on R-
{π

2
+kπ, k ∈Z

}
by:

tan(x)= sin(x)
cos(x)

.

The function tan is differentiable on R-
{π

2
+kπ, k ∈Z

}
and, for all x ∈ R-

{π
2
+kπ, k ∈Z

}
, we

have tan′(x)= 1+ tan2(x).

Properties

1. ∀x ∈R-
{π

2
+kπ, k ∈Z

}
, tan(−x)=−tan(x)

2. ∀x ∈R-
{π

2
+kπ, k ∈Z

}
, 1+ tan2(x)= 1

cos2(x)
.

The arctangent function

The function tan is continuous and strictly increasing on
]
−π

2
,
π

2

[
, so performs a bijection of]−π

2
,
π

2

[
on R . Therefore, it admits an inverse function defined as

arctan :R→
]−π

2
,
π

2

[

Graph of function tan
Graph of function arctan

1) The function arctan is odd, continuous and strictly increasing on R.

2) The function arctan is differentiable on R and

∀x ∈R, arctan′(x)= 1
1+ x2 .

Properties :

1. ∀x ∈R, tan(arctan(x))= x

2. ∀x ∈
]
−π

2
,
π

2

[
, arctan(tan(x))= x

3. ∀x ∈R, cos2(arctan(x))= 1
1+ x2 .

Remark :

arctan(x) 6= arcsin(x)
arccos(x)
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3 Hyperbolic Functions and their Inverses

This representation shows how an area relates

to hyperbola. Let (cosh A,sinh A) be a point on

the unit hyperbola of eqaution x2 − y2 = 1. A

line segment from the origin to the unit hyper-

bola sweeps out an area. like the unit circle,

it satisfies the property that the area of the

sector is precisely half the corresponding angle.

The hyperbolic functions are functions taht take an area as their argument instead of an

angle.

3.1 hyperbolic cosine function and its inverse

Hyperbolic Cosine Function

Definition 3.1
Given a real x, we call hyperbolic cosine of x, denoted cosh(x), the function defined as

cosh :R→ [1,+∞[

x 7→ ex + e−x

2

Properties of hyperbolic cosine :

• The function cosh is continuous, strictly decreasing

on R− and strictly increasing on R+

• The function cosh is differentiable on R and crois-

santecroissante cosh′(x)= ex − e−x

2
= sinh(x)

• The function cosh is even.

• ∀x ∈R, cosh(x)Ê 1. Graph of function cosh

Inverse hyperbolic cosine function

The restriction of the function cosh to the interval [0,+∞[ is continuous and strictly increas-

ing. It establishes a bijection of [0,+∞[ on [1,+∞[. Therefore, It admits an inverse function

denoted as, arcosh : [1,+∞[→ [0,+∞[

11
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Properties of inverse hyperbolic cosine :

• The function arcosh is continuous and strictly in-

creasing on [1,+∞[.

• The arcosh function is neither even nor odd.

• The function arcosh is differentiable on ]1,+∞[ and

∀x ∈]1,+∞[, arcosh′(x)= 1p
x2 −1

Graph of function arcosh
Properties :

1. ∀x ∈ [1,+∞[, cosh(arcosh(x))= x

2. ∀x ∈ [0,+∞[, arcosh(cosh(x))= x

3. ∀x ∈]1,+∞[, sinh(arcosh(x))=
√

x2 −1.

3.2 Hyperbolic sine function and its inverse

Hyperbolic Sine Function

Definition 3.2
Given a real x, we call hyperbolic sine of x, denoted sinh(x), the function defines as

sinh :R→R

x 7→ ex − e−x

2

Properties of hyperbolic sine :

• The function sinh is continuous and strictly in-

creasing on R.

• The function sinh is differentiable on R and crois-

santecroissante sinh′(x)= ex + e−x

2
= cosh(x).

• The function sinh is odd.

Graph of function sinh
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Inverse hyperbolic sine function

The function sinh is continuous and strictly increasing from R in R. It establishes a bijection

of R on R. Therefore, it admits an inverse function denoted arsinh :R→R

Properties of inverse hyperbolic sine :

• The function arsinh is continuous and strictly in-

creasing on R.

• The function arsinh is odd.

• The function arsinh is differentiable on R and

∀x ∈R, arsinh′(x)= 1p
1+ x2

Graph of function arsinh
Properties :

1. ∀x ∈R, sinh(arsinh(x))= x

2. ∀x ∈R, arsinh(sinh(x))= x

3. ∀x ∈R, cosh(arsinh(x))=
√

1+ x2.

3.3 Hyperbolic tangent function and its inverse

Hyperbolic tangent function

Definition 3.3
Given a real x, we call the hyperbolic tangent of x, denoted tanh(x), the function defined as

tanh :R→]−1,1[

x 7→ sinh(x)
cosh(x)

= ex − e−x

ex + e−x .

Properties of hyperbolic tangent :

• The function tanh is continuous and strictly

increasing on R.

• The function tanh is differentiable on R and

croiissante tanh′(x)= 1− tanh2(x)= 1
cosh2(x)

.

• The function tanh is odd.

Graph of function tanh
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Inverse hyperbolic tangent function

The function tanh is continuous and strictly increasing from R over ]−1,+1[. It establishes a

bijection of R on ]−1,+1[. Therefore, it admits an inverse function denoted

artanh :]−1,+1[→R

Properties of inverse hyperbolic tangent :

• The function artanh is continuous and strictly in-

creasing on ]−1,1[.

• The function artanh is odd.

• The function artanh is differentiable on ]−1,1[ and

∀x ∈]−1,1[, artanh′(x)= 1
1− x2

Graph of function artanh
Properties :

1. ∀x ∈]−1,1[, tanh(artanh(x))= x

2. ∀x ∈R, artanh(tanh(x))= x

3. ∀x ∈]−1,1[, cosh2(artanh(x))= 1
1− x2 .

Logarithmic expression of inverse hyperbolic function

1. arcosh(x)= ln(x+
√

x2 −1), x Ê 1

2. arsinh(x)= ln(x+
√

x2 +1), x ∈R

3. artanh(x)= 1
2

ln
(
1+ x
1− x

)
, x ∈]−1,1[

Useful equalities

1. ∀x ∈R, cosh(x)+sinh(x)= ex

2. ∀x ∈R,cosh(x)−sinh(x)= e−x

3. ∀x ∈R,
1

cosh2(x)
= 1− tanh2(x)
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Formulas: trigonometric and hyperbolic

Trigonometric properties: replace cos by cosh and sin by i-sinh.

cos2 x+sin2 x = 1 cosh2 x−sinh2 x = 1

cos(a+b)= cosa ·cosb−sina ·sinb cosh(a+b)= cosha ·coshb+sinha ·sinhb

sin(a+b)= sina ·cosb+sinb ·cosa sinh(a+b)= sinha ·coshb+sinhb ·cosha

tan(a+b)= tana+ tanb
1− tana · tanb

tanh(a+b)= tanha+ tanhb
1+ tanha · tanhb

cos(a−b)= cosa ·cosb+sina ·sinb cosh(a−b)= cosha ·coshb−sinha ·sinhb

sin(a−b)= sina ·cosb−sinb ·cosa sinh(a−b)= sinha ·coshb−sinhb ·cosha

tan(a−b)= tana− tanb
1+ tana · tanb

tanh(a−b)= tanha− tanhb
1− tanha · tanhb

cosa ·cosb = 1
2

[cos(a+b)+cos(a−b)] cosha ·coshb = 1
2

[cosh(a+b)+cosh(a−b)]

sina ·sinb = 1
2

[cos(a−b)−cos(a+b)] sinha ·sinhb = 1
2

[cosh(a+b)−cosh(a−b)]

sina ·cosb = 1
2

[sin(a+b)+sin(a−b)] sinha ·coshb = 1
2

[sinh(a+b)+sinh(a−b)]

cos p+cos q = 2cos
p+ q

2
·cos

p− q
2

cosh p+cosh q = 2cosh
p+ q

2
·cosh

p− q
2

cos p−cos q =−2sin
p+ q

2
·sin

p− q
2

cosh p−cosh q = 2sinh
p+ q

2
·cosh

p− q
2

sin p+sin q = 2sin
p+ q

2
·cos

p− q
2

sinh p+sinh q = 2sinh
p+ q

2
·cosh

p− q
2

sin p−sin q = 2sin
p− q

2
·cos

p+ q
2

sinh p−sinh q = 2sinh
p− q

2
·cosh

p+ q
2

,
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