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Introduction

The limited development LDn(x0) is useful in many areas of mathematics and physics, includ-

ing solving differential equations, performing integrations, evaluating limits and analyzing

local behavior of a function and its polynomial approximation.
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Limited development

1 Limited Development

Limited development

Let f : I → R be a function, x0 ∈ I and n ∈N. It is said that f admits a limited development

of order n, in a neighborhood of x = x0, that we note LDn(x0), if there exist real numbers

a0,a1, . . . ,an such that, when x → x0, it can be written as

f (x)= a0 +a1(x− x0)+a2(x− x0)2 +·· ·+an(x− x0)n + (x− x0)nε(x)

where,ε : I →R is the function such that lim
x→x0

ε(x)= 0

 (x− x0)nε(x) is the remainder of order n.

Example: Let f (x)= 1
1− x

, x 6= 1. f admits LDn(0), indeed :

Since 1− xn+1 = (1− x)(1+ x+·· ·+ xn), we have

1
1− x

− xn+1

1− x
= 1− xn+1

1− x
= (1− x)(1+ x+·· ·+ xn)

1− x
= 1+ x+·· ·+ xn

where
1

1− x
= 1+ x+·· ·+ xn + xn+1

1− x
= 1+ x+·· ·+ xn + xn x

1− x

Therefore the function f (x) = 1
1− x

, x 6= 1 admits a limited development of order n at x0 = 0,

with ε(x)= x
1− x

,where, lim
x→0

ε(x)= 0.

1.1 Taylor’s Formula

Taylor’s Formula

Let x0 be any real number and let f : I →R be a function that can be differentiated at least n

times at the point x0. The Taylor’s Formula for f of order n about the point x0 is defined by

f (x)= f (x0)+ f (1)(x0)
1!

(x− x0)+ f (2)(x0)
2!

(x− x0)2 +·· ·+ f (n)(x0)
n!

(x− x0)n + o((x− x0)n)

where o((x− x0)n) is called the Young remainder of order n.

 o((x− x0)n)= (x− x0)nε(x)

 f (n)(x0) refers to the nth derivative of the function f evaluated at x0.
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Limited development

 n! is the factorial of n where n!= n× (n−1)×·· ·×3×2×1.

 Pn(x) = f (x0)+ f (1)(x0)
1!

(x− x0)+ f (2)(x0)
2!

(x− x0)2 +·· ·+ f (n)(x0)
n!

(x− x0)n is the Taylor poly-

nomial in the variable x with n+1 terms.

Remark 1.

If x0 = 0, Taylor formula with Young remainder is known as Maclaurin’s formula:

f (x)= f (0)+ f (1)(0)
1!

(x)+ f (2)(0)
2!

(x)2 +·· ·+ f (n)(0)
n!

(x)n + o(xn)

Example 1: Find the Taylor formula of f (x)= ex of order n = 3 about the point x0 = 0

n f (n)(x) f (n)(0)
f (n)(0)

n!
(x)n

0 ex 1 1

1 ex 1 x

2 ex 1
x2

2

3 ex 1
x3

6

Summing the last column we find that: f (x)= 1+ x+ x2

2
+ x3

6
+ o(x3)

Example 2 The Taylor formula of f (x)= 1
1− x

, x 6= 1 of order n at x0 = 0 is

1
1− x

= 1+ x+·· ·+ xn + o(xn)

We notice that in this case the Taylor’s formula is exactly the limited development.

Remark 2.

■ Taylor-Young’s formula of f of order n at x0 is LDn(x0), where an = f (n)(x0)
n!

.

■ The LDn(x0) of f is given by the Taylor-Young’s formula of order n at x0, if f is differen-

tiated at least n times at the point x0 .
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1.2 Properties of Limited Development

� If f admits a LDn(x0), then lim
x→x0

f (x) exists, finite and is equal to a0.

This criterion is generally used to demonstrate that a function does not admit LDn(x0).

Example : The function ln(x) does not admit LDn(0), because lim
x→0

ln(x)=−∞.

� A function does not necessarily have an LDn(x0), but if it exists, then it is unique.

�Parity Even function The LDn(x0) of an even function has a main part that contains only

monomials of even degree. That is to say the coefficients a2k+1 = 0.

Odd function The LDn(x0) of an odd function has a main part that contains only

monomials of odd degree. That is to say the coefficients a2k = 0.

� The LDn(x0) of a polynomial of degree n is itself.

1.3 Limited Development of usual Functions

Below, we show some very famous limited development of common function of order n, at x = 0

using Maclaurin’s formula :

ex = 1+ x
1!

+ x2

2!
+·· ·+ xn

n!
+ o(xn)

ln(1+ x)= x− x2

2
+ x3

3
−·· ·+ (−1)n+1 xn

n
+ o(xn)

1
1− x

= 1+ x+ x2 +·· ·+ xn + o(xn)

p
1+ x = 1+ x

2
− x2

8
+·· ·+ (−1)n−1 1×3×5×·· ·× (2n−3)

2nn!
xn + o(xn)

(1+ x)α = 1+αx+ α(α−1)
2!

x2 +·· ·+ α(α−1) . . . (α−n+1)
n!

xn + o(xn)

cos(x)= 1− x2

2!
+ x4

4!
+·· ·+ (−1)n x2n

(2n)!
+ o(x2n+1)

sin(x)= x
1!

− x3

3!
+ x5

5!
+·· ·+ (−1)n x2n+1

(2n+1)!
+ o(x2n+2)

Remark 3.

We will often work at x0 = 0, based on changes of variables:

1. If x0 ∈R∗, we put t = x− x0, and then t → 0 when x → x0.

2. If x0 →∞, we put t = 1
x

, and then t → 0 when x →∞.
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Example Find LD3(
π

4
) for the function x 7→ sin(x)

We put t = x− π

4
, then t → 0 when x → π

4
. Thus, x = t+ π

4

1.4 Operation on Limited Development

Sum If f admits a LDn(0) : f (x)= a0 +a1x+a2x2 +·· ·+anxn + o(xn)

and g admits a LDn(0) : g(x)= b0 +b1x+b2x2 +·· ·+bnxn + o(xn)

Then f + g admits a LDn(0), which is given by the sum of the two limited development :

( f + g)(x)= (a0 +b0)+ (a1 +b1)x+ (a2 +b2)x2 +·· ·+ (an +bn)xn + o(xn)

Example : Find the LD4(0) of ln(1+ x)+ ex :

As

ln(1+ x)= x− x2

2
+ x3

3
− x4

4
+ o(x4)

ex = 1+ x+ x2

2
+ x3

6
+ x4

24
+ o(x4)

Hence : ln(1+ x)+ ex = 1+2x+ x3

2
− 5x4

24
+ o(x4)

Product If f admits a LDn(0) : f (x)= a0 +a1x+a2x2 +·· ·+anxn + o(xn)

and g admits a LDn(0) : g(x)= b0 +b1x+b2x2 +·· ·+bnxn + o(xn)

Then f g admits a LDn(0), obtained by keeping only the monomials of degree n or less in

the product: (a0 +a1x+a2x2 +·· ·+anxn)(b0 +b1x+b2x2 +·· ·+bnxn)

Example : Find LD3(0) of x 7→ cos(x)sin(x) :

We have

cos(x)= 1− x2

2
+ o

(
x3)

sin(x)= x− x3

6
+ o

(
x3)
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Then, we developing the product, only considering terms of order 3 or less :

cos(x)sin(x)=
(
1− x2

2
+ o

(
x3))(

x− x3

6
+ o

(
x3))

= x− 2x3

3
+ o

(
x3)

Quotient If f admits a LDn(0) : f (x)= a0 +a1x+a2x2 +·· ·+anxn + xnε(x)

and g admits a LDn(0) : g(x)= b0 +b1x+b2x2 +·· ·+bnxn + xnε(x), with b0 6= 0

Then
f
g

admits a LDn(0), obtained by the division according to the increasing degrees to

order n of the polynomial (a0+a1x+a2x2+·· ·+anxn) by the polynomial (b0+b1x+b2x2+
·· ·+bnxn)

Example : Let us compute LD5(0) for x 7→ tan(x)= sin(x)
cos(x)

We have

sin(x)= x− x3

6
+ x5

120
+ o

(
x5)

cos(x)= 1− x2

2
+ x4

24
+ o

(
x5)

Thus,

tan(x)= sin(x)
cos(x)

=
x− x3

6
+ x5

120
+ o

(
x5)

1− x2

2
+ x4

24
+ o

(
x5

)
Then, we developing the division according to the increasing degrees to order 5 :

Therefore, tan(x)= x+ x3

3
+ 2x5

15
+ o(x5)
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Composition If f admits a LDn(g(0)) :

f (x)= a0 +a1(x− g(0))+a2(x− g(0))2 +·· ·+an(x− g(0))n + (x− g(0))nε(x)

and g admits a LDn(0) : g(x)= b0 +b1x+b2x2 +·· ·+bnxn + xnε(x)

Then, f ◦ g admits a LDn(0), obtained by replacing the limited development of g in that

of f and keeping only the monomials of degree n or less.

Example : Let us compute LD3(0) for x 7→ sin
(

1
1− x

−1
)

Since,
1

1− x
−1=−x+ x2 − x3 + o(x3)

sin(x)= x− x3

6
+ o(x3)

Then, we compose, only considering terms of order 3 or less :

sin
(

1
1− x

−1
)
=−x+ x2 − x3 − 1

6
(−x)3 + o(x3)

=−x+ x2 − 5x3

6
+ o(x3)

Differentiability If f : I → R admits a LDn+1(0) and f is differentiated at least n+1 times,

then f ′ admits a LDn(0), obtained by deriving the limited development of f .

Example : compute LD3(0) for x 7→ 1
(1− x)2

Since,
1

(1− x)2 =
(

1
1− x

)′
and

1
1− x

= 1+ x+ x2 + x3 + x4 + o(x4)

Derive the LD4(0) of
1

1− x
, we obtain LD3(0) for

1
(1− x)2 :

1
(1− x)2 = 1+2x+3x2 +4x3 + o(x3)

2 Applications on Calculating Limits

Limited development is very useful in the case of an indeterminate form when computing a

limit:

# Evaluate lim
x→0

x−sin(x)
x3

We have lim
x→0

x−sin(x)
x3 = 0

0
(IF)
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Since, sin(x)= x+ x3

6
+ x5

120
+ o(x5), we obtain

lim
x→0

x−sin(x)
x3 = lim

x→0

x−
(
x+ x3

6 + x5

120 + o(x5)
)

x3

= lim
x→0

−1
6
− x2

120
+ o(x2)

=−1
6

# Evaluate lim
x→+∞x2

(
e

1
x − e

1
1+x

)
We have lim

x→+∞x2
(
e

1
x − e

1
1+x

)
= 0.∞ (IF)

First, we put t = 1
x

, and then t → 0 when x →+∞ and

x2
(
e

1
x − e

1
1+x

)
= 1

t2

(
et − e

t
1+t

)

Since,
t

1+ t
= t− t2 + o(t2) and et = 1+ t+ t2

2
+ o(t2)

We obtained,

e
t

1+t = 1+ t− t2 + (t− t2)2

2
+ o(t2)= 1+ t− 1

2
t2 + o(t2)

Hence,

1
t2

(
et − e

t
1+t

)
= 1

t2

((
1+ t+ t2

2

)
−

(
1+ t− 1

2
t2

)
+ o(t2)

)
= 1

t2

(
t2 + o(t2)

)
= 1+ o(1)

Consequently,

lim
x→+∞x2

(
e

1
x − e

1
1+x

)
= lim

t→0

1
t2

(
et − e

t
1+t

)
= lim

t→0
(1+ o(1))

= 1
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