University of Batna 2

Institute of Industrial Hygiene and

Safety

Module : Math 1 (L1)
Dr.K. Bayarassou

Chapter 5 : Limited Development

Introduction

The limited development $L D_{n}\left(x_{0}\right)$ is useful in many areas of mathematics and physics, including solving differential equations, performing integrations, evaluating limits and analyzing local behavior of a function and its polynomial approximation.

Contents

Introduction 1
1 Limited Development 2
1.1 Taylor’s Formula . 2
1.2 Properties of Limited Development . 4
1.3 Limited Development of usual Functions . 4
1.4 Operation on Limited Development . 5

2 Applications on Calculating Limits 7

1 Limited Development

Limited development

Let $f: I \rightarrow \mathbb{R}$ be a function, $x_{0} \in I$ and $n \in \mathbb{N}$. It is said that f admits a limited development of order n, in a neighborhood of $x=x_{0}$, that we note $L D_{n}\left(x_{0}\right)$, if there exist real numbers $a_{0}, a_{1}, \ldots, a_{n}$ such that, when $x \rightarrow x_{0}$, it can be written as

$$
f(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots+a_{n}\left(x-x_{0}\right)^{n}+\left(x-x_{0}\right)^{n} \epsilon(x)
$$

where, $\epsilon: I \rightarrow \mathbb{R}$ is the function such that $\lim _{x \rightarrow x_{0}} \epsilon(x)=0$

- $\left(x-x_{0}\right)^{n} \epsilon(x)$ is the remainder of order n.

Example: Let $f(x)=\frac{1}{1-x}, x \neq 1$. f admits $L D_{n}(0)$, indeed :
Since $1-x^{n+1}=(1-x)\left(1+x+\cdots+x^{n}\right)$, we have

$$
\frac{1}{1-x}-\frac{x^{n+1}}{1-x}=\frac{1-x^{n+1}}{1-x}=\frac{(1-x)\left(1+x+\cdots+x^{n}\right)}{1-x}=1+x+\cdots+x^{n}
$$

where

$$
\frac{1}{1-x}=1+x+\cdots+x^{n}+\frac{x^{n+1}}{1-x}=1+x+\cdots+x^{n}+x^{n} \frac{x}{1-x}
$$

Therefore the function $f(x)=\frac{1}{1-x}, x \neq 1$ admits a limited development of order n at $x_{0}=0$, with $\epsilon(x)=\frac{x}{1-x}$, where, $\lim _{x \rightarrow 0} \epsilon(x)=0$.

1.1 Taylor's Formula

Taylor's Formula

Let x_{0} be any real number and let $f: I \rightarrow \mathbb{R}$ be a function that can be differentiated at least n times at the point x_{0}. The Taylor's Formula for \mathbf{f} of order \mathbf{n} about the point $\mathbf{x}_{\mathbf{0}}$ is defined by

$$
f(x)=f\left(x_{0}\right)+\frac{f^{(1)}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{(2)}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+o\left(\left(x-x_{0}\right)^{n}\right)
$$

where $o\left(\left(x-x_{0}\right)^{n}\right)$ is called the Young remainder of order n.

- $o\left(\left(x-x_{0}\right)^{n}\right)=\left(x-x_{0}\right)^{n} \epsilon(x)$
- $f^{(n)}\left(x_{0}\right)$ refers to the $n^{\text {th }}$ derivative of the function f evaluated at x_{0}.
- n ! is the factorial of n where $n!=n \times(n-1) \times \cdots \times 3 \times 2 \times 1$.
- $P_{n}(x)=f\left(x_{0}\right)+\frac{f^{(1)}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{(2)}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}$ is the Taylor poly nomial in the variable x with $n+1$ terms.

Remark 1.

If $x_{0}=0$, Taylor formula with Young remainder is known as Maclaurin's formula:

$$
f(x)=f(0)+\frac{f^{(1)}(0)}{1!}(x)+\frac{f^{(2)}(0)}{2!}(x)^{2}+\cdots+\frac{f^{(n)}(0)}{n!}(x)^{n}+o\left(x^{n}\right)
$$

Example 1: Find the Taylor formula of $f(x)=e^{x}$ of order $n=3$ about the point $x_{0}=0$

n	$f^{(n)}(x)$	$f^{(n)}(0)$	$\frac{f^{(n)}(0)}{n!}(x)^{n}$
0	e^{x}	1	1
1	e^{x}	1	x
2	e^{x}	1	$\frac{x^{2}}{2}$
3	e^{x}	1	$\frac{x^{3}}{6}$

Summing the last column we find that: $f(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+o\left(x^{3}\right)$
Example 2 The Taylor formula of $f(x)=\frac{1}{1-x}, x \neq 1$ of order n at $x_{0}=0$ is

$$
\frac{1}{1-x}=1+x+\cdots+x^{n}+o\left(x^{n}\right)
$$

We notice that in this case the Taylor's formula is exactly the limited development.

Remark 2.

- Taylor-Young's formula of f of order n at x_{0} is $L D_{n}\left(x_{0}\right)$, where $a_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!}$.
- The $L D_{n}\left(x_{0}\right)$ of f is given by the Taylor-Young's formula of order n at x_{0}, if f is differentiated at least n times at the point x_{0}.

1.2 Properties of Limited Development

- If f admits a $L D_{n}\left(x_{0}\right)$, then $\lim _{x \rightarrow x_{0}} f(x)$ exists, finite and is equal to a_{0}.

This criterion is generally used to demonstrate that a function does not admit $L D_{n}\left(x_{0}\right)$.
Example : The function $\ln (x)$ does not admit $L D_{n}(0)$, because $\lim _{x \rightarrow 0} \ln (x)=-\infty$.

- A function does not necessarily have an $L D_{n}\left(x_{0}\right)$, but if it exists, then it is unique.
- Parity Even function The $L D_{n}\left(x_{0}\right)$ of an even function has a main part that contains only monomials of even degree. That is to say the coefficients $a_{2 k+1}=0$.

Odd function The $L D_{n}\left(x_{0}\right)$ of an odd function has a main part that contains only monomials of odd degree. That is to say the coefficients $a_{2 k}=0$.

- The $L D_{n}\left(x_{0}\right)$ of a polynomial of degree n is itself.

1.3 Limited Development of usual Functions

Below, we show some very famous limited development of common function of order n, at $x=0$ using Maclaurin's formula :

$$
\begin{aligned}
& e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+o\left(x^{n}\right) \\
& \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n+1} \frac{x^{n}}{n}+o\left(x^{n}\right) \\
& \frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+o\left(x^{n}\right) \\
& \sqrt{1+x}=1+\frac{x}{2}-\frac{x^{2}}{8}+\cdots+(-1)^{n-1} \frac{1 \times 3 \times 5 \times \cdots \times(2 n-3)}{2^{n} n!} x^{n}+o\left(x^{n}\right) \\
& (1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!} x^{2}+\cdots+\frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n!} x^{n}+o\left(x^{n}\right) \\
& \cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+o\left(x^{2 n+1}\right) \\
& \sin (x)=\frac{x}{1!}-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}+o\left(x^{2 n+2}\right)
\end{aligned}
$$

Remark 3.

We will often work at $x_{0}=0$, based on changes of variables:

1. If $x_{0} \in \mathbb{R}^{*}$, we put $t=x-x_{0}$, and then $t \rightarrow 0$ when $x \rightarrow x_{0}$.
2. If $x_{0} \rightarrow \infty$, we put $t=\frac{1}{x}$, and then $t \rightarrow 0$ when $x \rightarrow \infty$.

Example Find $L D_{3}\left(\frac{\pi}{4}\right)$ for the function $x \mapsto \sin (x)$
We put $t=x-\frac{\pi}{4}$, then $t \rightarrow 0$ when $x \rightarrow \frac{\pi}{4}$. Thus, $x=t+\frac{\pi}{4}$

$$
\begin{aligned}
f(x)=\sin (x) & =\sin \left(t+\frac{\pi}{4}\right)=\sin (t) \cos \left(\frac{\pi}{4}\right)+\cos (t) \sin \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2} \sin (t)+\frac{\sqrt{2}}{2} \cos (t) \\
& =\frac{\sqrt{2}}{2}\left(t-\frac{t^{3}}{6}+o\left(t^{3}\right)\right)+\frac{\sqrt{2}}{2}\left(1-\frac{t^{2}}{2}+o\left(t^{3}\right)\right)=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} t-\frac{\sqrt{2}}{4} t^{2}-\frac{\sqrt{2}}{12} t^{3}+o\left(t^{3}\right) \\
& =\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\left(x-\frac{\pi}{4}\right)-\frac{\sqrt{2}}{4}\left(x-\frac{\pi}{4}\right)^{2}-\frac{\sqrt{2}}{12}\left(x-\frac{\pi}{4}\right)^{3}+o\left(\left(x-\frac{\pi}{4}\right)^{3}\right)
\end{aligned}
$$

1.4 Operation on Limited Development

Sum If f admits a $L D_{n}(0): f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+o\left(x^{n}\right)$
and g admits a $L D_{n}(0): g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n} x^{n}+o\left(x^{n}\right)$
Then $f+g$ admits a $L D_{n}(0)$, which is given by the sum of the two limited development:

$$
(f+g)(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}+\cdots+\left(a_{n}+b_{n}\right) x^{n}+o\left(x^{n}\right)
$$

Example : Find the $L D_{4}(0)$ of $\ln (1+x)+e^{x}$:
As

$$
\begin{aligned}
& \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+o\left(x^{4}\right) \\
& e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+o\left(x^{4}\right)
\end{aligned}
$$

Hence : $\ln (1+x)+e^{x}=1+2 x+\frac{x^{3}}{2}-\frac{5 x^{4}}{24}+o\left(x^{4}\right)$
Product If f admits a $L D_{n}(0): f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+o\left(x^{n}\right)$
and g admits a $L D_{n}(0): g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n} x^{n}+o\left(x^{n}\right)$
Then $f g$ admits a $L D_{n}(0)$, obtained by keeping only the monomials of degree n or less in the product:

$$
\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}\right)\left(b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n} x^{n}\right)
$$

Example : Find $L D_{3}(0)$ of $x \mapsto \cos (x) \sin (x)$:
We have

$$
\begin{aligned}
& \cos (x)=1-\frac{x^{2}}{2}+o\left(x^{3}\right) \\
& \sin (x)=x-\frac{x^{3}}{6}+o\left(x^{3}\right)
\end{aligned}
$$

Then, we developing the product, only considering terms of order 3 or less :

$$
\begin{aligned}
\cos (x) \sin (x) & =\left(1-\frac{x^{2}}{2}+o\left(x^{3}\right)\right)\left(x-\frac{x^{3}}{6}+o\left(x^{3}\right)\right) \\
& =x-\frac{2 x^{3}}{3}+o\left(x^{3}\right)
\end{aligned}
$$

Quotient If f admits a $L D_{n}(0): f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+x^{n} \epsilon(x)$
and g admits a $L D_{n}(0): g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n} x^{n}+x^{n} \epsilon(x)$, with $b_{0} \neq 0$
Then $\frac{f}{g}$ admits a $L D_{n}(0)$, obtained by the division according to the increasing degrees to order n of the polynomial $\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}\right)$ by the polynomial $\left(b_{0}+b_{1} x+b_{2} x^{2}+\right.$ $\cdots+b_{n} x^{n}$)

Example: Let us compute $L D_{5}(0)$ for $x \mapsto \tan (x)=\frac{\sin (x)}{\cos (x)}$
We have

$$
\begin{aligned}
& \sin (x)=x-\frac{x^{3}}{6}+\frac{x^{5}}{120}+o\left(x^{5}\right) \\
& \cos (x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+o\left(x^{5}\right)
\end{aligned}
$$

Thus,

$$
\tan (x)=\frac{\sin (x)}{\cos (x)}=\frac{x-\frac{x^{3}}{6}+\frac{x^{5}}{120}+o\left(x^{5}\right)}{1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+o\left(x^{5}\right)}
$$

Then, we developing the division according to the increasing degrees to order 5 :

$x-\frac{x^{3}}{6}+\frac{x^{5}}{120}+o\left(x^{5}\right)$	
$x-\frac{x^{3}}{2}+\frac{x^{5}}{24}+o\left(x^{5}\right)$	$1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+o\left(x^{5}\right)$
$\frac{x^{3}}{3}-\frac{x^{5}}{30}+o\left(x^{5}\right)$ $\frac{x^{3}}{3}-\frac{x^{5}}{6}+o\left(x^{5}\right)$ $\frac{2 x^{5}}{15}+o\left(x^{5}\right)$ $\frac{2 x^{5}}{15}+o\left(x^{5}\right)$ $o\left(x^{5}\right)$	

Therefore, $\tan (x)=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+o\left(x^{5}\right)$

Composition If f admits a $L D_{n}(g(0))$:

$$
f(x)=a_{0}+a_{1}(x-g(0))+a_{2}(x-g(0))^{2}+\cdots+a_{n}(x-g(0))^{n}+(x-g(0))^{n} \epsilon(x)
$$

and g admits a $L D_{n}(0): g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n} x^{n}+x^{n} \epsilon(x)$
Then, $f \circ g$ admits a $L D_{n}(0)$, obtained by replacing the limited development of g in that of f and keeping only the monomials of degree n or less.
Example : Let us compute $L D_{3}(0)$ for $x \mapsto \sin \left(\frac{1}{1-x}-1\right)$
Since,

$$
\begin{gathered}
\frac{1}{1-x}-1=-x+x^{2}-x^{3}+o\left(x^{3}\right) \\
\sin (x)=x-\frac{x^{3}}{6}+o\left(x^{3}\right)
\end{gathered}
$$

Then, we compose, only considering terms of order 3 or less :

$$
\begin{aligned}
\sin \left(\frac{1}{1-x}-1\right) & =-x+x^{2}-x^{3}-\frac{1}{6}(-x)^{3}+o\left(x^{3}\right) \\
& =-x+x^{2}-\frac{5 x^{3}}{6}+o\left(x^{3}\right)
\end{aligned}
$$

Differentiability If $f: I \rightarrow \mathbb{R}$ admits a $L D_{n+1}(0)$ and f is differentiated at least $n+1$ times, then f^{\prime} admits a $L D_{n}(0)$, obtained by deriving the limited development of f.
Example : compute $L D_{3}(0)$ for $x \mapsto \frac{1}{(1-x)^{2}}$
Since, $\frac{1}{(1-x)^{2}}=\left(\frac{1}{1-x}\right)^{\prime}$ and $\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+o\left(x^{4}\right)$
Derive the $L D_{4}(0)$ of $\frac{1}{1-x}$, we obtain $L D_{3}(0)$ for $\frac{1}{(1-x)^{2}}$:

$$
\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+4 x^{3}+o\left(x^{3}\right)
$$

2 Applications on Calculating Limits

Limited development is very useful in the case of an indeterminate form when computing a limit:
\bigcirc Evaluate $\lim _{x \rightarrow 0} \frac{x-\sin (x)}{x^{3}}$
We have $\lim _{x \rightarrow 0} \frac{x-\sin (x)}{x^{3}}=\frac{0}{0}$ (IF)

Since, $\sin (x)=x+\frac{x^{3}}{6}+\frac{x^{5}}{120}+o\left(x^{5}\right)$, we obtain

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x-\sin (x)}{x^{3}} & =\lim _{x \rightarrow 0} \frac{x-\left(x+\frac{x^{3}}{6}+\frac{x^{5}}{120}+o\left(x^{5}\right)\right)}{x^{3}} \\
& =\lim _{x \rightarrow 0}-\frac{1}{6}-\frac{x^{2}}{120}+o\left(x^{2}\right) \\
& =-\frac{1}{6}
\end{aligned}
$$

Evaluate $\lim _{x \rightarrow+\infty} x^{2}\left(e^{\frac{1}{x}}-e^{\frac{1}{1+x}}\right)$
We have $\lim _{x \rightarrow+\infty} x^{2}\left(e^{\frac{1}{x}}-e^{\frac{1}{1+x}}\right)=0 . \infty$ (IF)
First, we put $t=\frac{1}{x}$, and then $t \rightarrow 0$ when $x \rightarrow+\infty$ and

$$
x^{2}\left(e^{\frac{1}{x}}-e^{\frac{1}{1+x}}\right)=\frac{1}{t^{2}}\left(e^{t}-e^{\frac{t}{1+t}}\right)
$$

Since, $\frac{t}{1+t}=t-t^{2}+o\left(t^{2}\right)$ and $e^{t}=1+t+\frac{t^{2}}{2}+o\left(t^{2}\right)$
We obtained,

$$
e^{\frac{t}{1+t}}=1+t-t^{2}+\frac{\left(t-t^{2}\right)^{2}}{2}+o\left(t^{2}\right)=1+t-\frac{1}{2} t^{2}+o\left(t^{2}\right)
$$

Hence,

$$
\begin{aligned}
\frac{1}{t^{2}}\left(e^{t}-e^{\frac{t}{1+t}}\right) & =\frac{1}{t^{2}}\left(\left(1+t+\frac{t^{2}}{2}\right)-\left(1+t-\frac{1}{2} t^{2}\right)+o\left(t^{2}\right)\right) \\
& =\frac{1}{t^{2}}\left(t^{2}+o\left(t^{2}\right)\right) \\
& =1+o(1)
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} x^{2}\left(e^{\frac{1}{x}}-e^{\frac{1}{1+x}}\right) & =\lim _{t \rightarrow 0} \frac{1}{t^{2}}\left(e^{t}-e^{\frac{t}{1+t}}\right) \\
& =\lim _{t \rightarrow 0}(1+o(1)) \\
& =1
\end{aligned}
$$

