Math Terminology

This sheet aims to give students an important grounding in the basic maths terminology and notation.

Number Systems

\mathbb{N} The set of natural numbers
$\mathbb{Z} \quad$ The set of integers
\mathbb{Q} The set of rational numbers
\mathbb{R} The set of real numbers
\mathbb{C} The set of complex numbers

The variants of equals sign

= : equals
\neq : not equal
\approx : approximately equal to
\geqslant : greater than or equal to
\leqslant : less than or equal to

Algebraic Operations

Operation	Words Used	Example
Addition (+)	Sum, total, increase, plus	$\begin{gathered} \text { addend }+ \text { addend }=\text { sum } \\ 1+2=3 \end{gathered}$
Subtraction (-)	Difference, decrease, minus	minuend - subtrahend $=$ difference $3-2=1$
Multiplication (\times)	Product, of, times	$\begin{gathered} 4 \times 2=8 \\ \text { factor } \times \text { factor }=\text { product } \end{gathered}$
Division ($\quad \div$	Quotient, per, divided by	$4 \div 2=2$ dividend \div divisor $=$ quotient

Remark

If the number is not completely divisible by another number, then we are left with a value, which is called remainder.

$$
\frac{\text { dividend }}{\text { divisor }}=\text { quotient }+\frac{\text { remainder }}{\text { divisor }}
$$

Symbols

ϵ : Belongs to
$\notin:$ Does not belongs to
| : Such that
∞ : Infinity
() : Parentheses
\{\}: Braces
[]: Brackets

Definitions

- Prime numbers are integers greater than 1 that are only divisible by themselves and 1.

■ Odd numbers are the integers that on division by 2 result in a remainder of 1 . It is of the form $\mathbf{2 n}+\mathbf{1}$, where \mathbf{n} is any integer.

■ Even numbers are the integers that on division by 2 result in a remainder of 0 . It is of the form $\mathbf{2 n}$, where \mathbf{n} is any integer.
\square Rational numbers are a type of real numbers, which are in the form $\frac{\mathbf{p}}{\mathbf{q}}$, where $\mathbf{p}, \mathbf{q} \in \mathbb{Z}$ and $\mathbf{q} \neq \mathbf{0}$.

Examples

In table below, you will find some examples to learn how to read an algebraic expression.

$1+2=3$	One plus Two equals Three
$1-2=-1$	One minus Two equals negative One
$4 \times 2=8$	Four times Two equals eight
$4 \div 2=2$	Four divided by Two equals Two
16×5	The product of 16 and 5
$66+92$	66 is increased by 92
$93 \div 32$	The quotient of 93 and 32
$85-15$	The difference between 85 and 15
$36 \leqslant 41$	36 is less than or equal to 41
$56<10^{2}$	56 is less than of 10 squared
$\sqrt{4}>1^{3}$	The square root of 4 is greater than the cube of 1
5^{2}	Five sequared or five to the second power
5^{3}	Five cubed or five to the third power
5^{4}	Five to the fourth
$\sqrt{3}$	The square root of 3
$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$	One half, One third, One fourth or quarter
$\frac{1}{10}$	One tenth
$\frac{5}{6}$	Five sixth or five over six
$10(x+2)$	Ten times the quantity x plus Two.

