Math Terminology

This sheet aims to give students an important grounding in the basic maths terminology and notation.

Number Systems

The variants of equals sign

 \mathbb{N} The set of natural numbers = : equals

 \mathbb{Z} The set of integers \neq : not equal

 \mathbb{Q} The set of rational numbers \approx : approximately equal to

 \mathbb{R} The set of real numbers \geqslant : greater than or equal to

 \mathbb{C} The set of complex numbers \leqslant : less than or equal to

Algebraic Operations

Operation	Words Used	Example
	Sum, total, increase, plus	addend + addend = sum $1 + 2 = 3$
$\begin{array}{ c c c c c }\hline \textbf{Subtraction} \ (-) \\ \hline \end{array}$	Difference, decrease, minus	minuend – subtrahend = difference $3-2=1$
$\color{red} \textbf{Multiplication} \hspace{0.1cm} (\times)$	Product, of, times	$4 \times 2 = 8$ factor × factor = product
Division (\div)	Quotient, per, divided by	$4 \div 2 = 2$ dividend \div divisor = quotient

Remark

If the number is not completely divisible by another number, then we are left with a value, which is called remainder.

$$\frac{\text{dividend}}{\text{divisor}} = \text{quotient} + \frac{\text{remainder}}{\text{divisor}}$$

Symbols

 \in : Belongs to (): Parentheses

€: Does not belongs to

{} : Braces

 ∞ : Infinity []: Brackets

Definitions

- Prime numbers are integers greater than 1 that are only divisible by themselves and 1.
- Odd numbers are the integers that on division by 2 result in a remainder of 1. It is of the form 2n + 1, where n is any integer.
- **Even numbers** are the integers that on division by 2 result in a remainder of 0. It is of the form 2n, where n is any integer.
- Rational numbers are a type of real numbers, which are in the form $\frac{\mathbf{p}}{\mathbf{q}}$, where $\mathbf{p}, \mathbf{q} \in \mathbb{Z}$ and $\mathbf{q} \neq \mathbf{0}$.

Examples

In table below, you will find some examples to learn how to read an algebraic expression.

1 + 2 = 3	One plus Two equals Three	
1 - 2 = -1	One minus Two equals negative One	
$4 \times 2 = 8$	Four times Two equals eight	
$4 \div 2 = 2$	Four divided by Two equals Two	
16×5	The product of 16 and 5	
66 + 92	66 is increased by 92	
$93 \div 32$	The quotient of 93 and 32	
85 - 15	The difference between 85 and 15	
$36 \leqslant 41$	36 is less than or equal to 41	
$56 < 10^2$	56 is less than of 10 squared	
$\sqrt{4} > 1^3$	The square root of 4 is greater than the cube of 1	
5^{2}	Five sequared or five to the second power	
5^{3}	Five cubed or five to the third power	
5^{4}	Five to the fourth	
$\sqrt{3}$	The square root of 3	
$\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$	One half, One third, One fourth or quarter	
$\frac{1}{10}$	One tenth	
$\frac{5}{6}$	Five sixth or five over six	
10(x+2)	Ten times the quantity x plus Two.	