Tutorial $\mathrm{n}^{\circ} 2$

Sets, Relations and Functions

Exercise 1)

1/ We consider the following sets :

$$
\begin{gathered}
A=\left\{x \in \mathbb{Z},|x-1|<\frac{3}{2}\right\}, \quad B=\{3,4\}, \quad C=\left\{x \in \mathbb{N}, \frac{2 x+3}{2} \leqslant 4\right\}, \\
D=\{0,1,2,5\}, \quad E=\{1,2,3,4\} .
\end{gathered}
$$

1. Describe the sets A and C using Roster method.
2. Determine which of these sets are equal or subsets of which other of these sets.
3. Determine the cardinality of A and B, then conclude the cardinality of $A \times B$ and $\mathcal{P}(A)$.
4. Find $A \cap B, A \cup B, C \backslash E, \complement_{D}(A), A \times B$ and $\mathcal{P}(A)$.

2/ Let $A=]-\infty, 1[\cup] 2,+\infty[, \quad B=]-\infty, 1[$ and $\quad C=] 2,+\infty[$.
Find $\complement_{\mathbb{R}}(A)$ and $\complement_{\mathbb{R}}(B) \cap \complement_{\mathbb{R}}(C)$. What can you conclude?

Exercise 2|

Let $A, B, C \in \mathcal{P}(E)$ and $f: E \rightarrow F$ be a function, prove the following
1/ $A \subseteq B \Longrightarrow f(A) \subseteq f(B)$
2/ $\left\{\begin{array}{l}A \subseteq B \\ \wedge \\ B \cap C=\varnothing\end{array} \quad \Longrightarrow A \cap C=\varnothing \quad\right.$ (proof by contradiction)

Exercise 3|

Let \mathcal{R} be the relation defined on \mathbb{Z} by : $\forall n, m \in \mathbb{Z}, n \mathcal{R} m \Longleftrightarrow \exists k \in \mathbb{Z}, n-m=3 k$

1. Determine whether \mathcal{R} is reflexive? symmetric? antisymmetric? transitive? What can you conclude?
2. Find the equivalence classes $\mathcal{C}(2)$ and $\mathcal{C}(5)$.

Exercise 4|

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=x^{2}-4 x+5$
1/ Find $f^{-1}(\{5\})$
2/ Is f injective ?
3/ Prove that $\forall x \in \mathbb{R}, f(x) \geqslant 1$
4/ Is f surjective?
$5 /$ Let $g:]-\infty, 2] \rightarrow[1,+\infty[$ be a function defined by $g(x)=f(x)$

- Prove that g is bijective, and find g^{-1}.

