Tutorial $\mathbf{n}^{\circ} 3$

Real Functions of One Real Variable

Exercice 1|

Evaluate the following limits :

$$
\lim _{x \rightarrow+\infty} \frac{\sqrt{1+x^{2}}-\sqrt{1+x}}{x^{2}}, \quad \lim _{x \rightarrow-\infty} \frac{4 x^{2}-\sin (5 x)}{x^{2}+7} \text { (use squeeze theorem) }
$$

Exercice 2|

1. Show that f has a continuous extension at $x=2$, and find that extension.

$$
f(x)=\frac{x^{2}-x-2}{x^{2}-4}, \quad x \neq 2
$$

2. Determine the value of a and b for which the function g is continuous at $x=0$.

$$
g(x)= \begin{cases}\frac{\sin ((a+1) x)+\ln (x+1)}{x} & \text { for } x<0 \\ b & \text { for } x=0 \\ \frac{\sqrt{x+x^{2}}-\sqrt{x}}{x \sqrt{x}} & \text { for } x>0\end{cases}
$$

Exercice 3|

1. Examine the differentiability of f on \mathbb{R}, where

$$
f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right) & \text { for } x \neq 0 \\ 0 & \text { for } x=0\end{cases}
$$

2. Discuss the differentiability of g at $x=0$, where

$$
g(x)=\ln (1+|x|)
$$

Exercice 4|

1. Let f be the function defined by : $\quad f(x)=2 x^{2}-16 x+1$
(a) Find the extremum of f on $[0,9]$
(b) Prove that the equation $f(x)=0$ has a unique solution α on $[0,3]$.
2. Let g be the function defined by : $\quad g(x)= \begin{cases}\frac{1-\cos (2 \pi x)}{x} & \text { for } x \neq 0 \\ 0 & \text { for } x=0\end{cases}$ Show that there exist $c \in]-1,1\left[\right.$ such that $g^{\prime}(c)=0$
