Tutorial n°1 Logic and Mathematical Proof

Exercice 1

- 1/ Use quantifiers to state the following propositions :
 - 1. 102 is a multiple of 3.
 - 2. For any real numbers, if the cubes of two numbers are equal, then the numbers are equal.
 - 3. For every natural number there exists a greater natural number.
- 2/ Determine whether the following formulas are true or false; and give thier negation :

$$\begin{array}{ll} \mathbf{P_1.} \ \forall x \in \mathbb{R}, (x+1)^2 > 0 & \mathbf{P_2.} \ \exists x \in \mathbb{R}, x^2 = -1 \\ \\ \mathbf{P_3.} \ \exists ! x \in \mathbb{R}, \, 2x^2 + 3x = 0 & \mathbf{P_4.} \ \forall (x,y,z) \in \mathbb{R}^3, \, [(xz = yz)] \Longrightarrow x = y \\ \end{array}$$

- 3/ Write the contrapositive of the following implication :
 - 1. *n* is prime \implies (n = 2) or (n is odd).
 - 2. $\forall n \ge 2$, $(n^2 1)$ is not divisible by 8, then n is even.

Exercice 2

Simplify the following statements :

• $[P \Longrightarrow (Q \Longrightarrow R)], [(P \land Q) \Longrightarrow R].$ What can you deduce from this?

Prove the following equivalence using the truth table:

•
$$\overline{(P \Longrightarrow Q)} \iff (P \land \overline{Q})$$

Exercice 3

Prove that:

If x is a real number, then |x+3| - x > 2

Exercice 4

Prove by contradiction the following proposition :

Let n be an integer. If $n^2 + 5$ is odd, then n is even.

Exercice 5

Prove by induction that :

for every natural number n, $n^3 + 2n$ is divisible by 3.