Tutorial $\mathbf{n}^{\circ} 1$

Logic and Mathematical Proof

Exercice 1I

1/ Use quantifiers to state the following propositions :

1. 102 is a multiple of 3 .
2. For any real numbers, if the cubes of two numbers are equal, then the numbers are equal.
3. For every natural number there exists a greater natural number.

2/ Determine whether the following formulas are true or false; and give thier negation :
$\mathbf{P}_{\mathbf{1}} . \forall x \in \mathbb{R},(x+1)^{2}>0$
$\mathbf{P}_{\mathbf{2}} . \exists x \in \mathbb{R}, x^{2}=-1$
$\mathbf{P}_{3} . \exists!x \in \mathbb{R}, 2 x^{2}+3 x=0$
$\mathbf{P}_{4} . \forall(x, y, z) \in \mathbb{R}^{3},[(x z=y z)] \Longrightarrow x=y$

3/ Write the contrapositive of the following implication :

1. n is prime $\Longrightarrow(n=2)$ or (n is odd $)$.
2. $\forall n \geqslant 2,\left(n^{2}-1\right)$ is not divisible by 8 , then n is even.

Exercice 2|

Simplify the following statements :

- $[P \Longrightarrow(Q \Longrightarrow R)], \quad[(P \wedge Q) \Longrightarrow R] . \quad$ What can you deduce from this?

Prove the following equivalence using the truth table:

- $\overline{(P \Longrightarrow Q)} \Longleftrightarrow(P \wedge \bar{Q})$

Exercice 3|

Prove that:

If x is a real number, then $|x+3|-x>2$

Exercice 4|

Prove by contradiction the following proposition :
Let n be an integer. If $n^{2}+5$ is odd, then n is even.

Exercice 5

Prove by induction that:
for every natural number $n, n^{3}+2 n$ is divisible by 3 .

