

# **Calculating with MATLAB**

## **Contents**

| 1.1 | Simple calculation 11 |                                      |  |
|-----|-----------------------|--------------------------------------|--|
|     | 1.1.1                 | Variables in MATLAB 11               |  |
|     | 1.1.2                 | Numbers in MATLAB 11                 |  |
|     | 1.1.3                 | Basic arithmetic operations 13       |  |
|     | 1.1.4                 | Predefined mathematical functions 13 |  |
| 1.2 | Vecto                 | or calculation 13                    |  |
|     | 1.2.1                 | Define a vector 13                   |  |
|     | 1.2.2                 | Vector Operations 14                 |  |
|     | 1.2.3                 | Manipulating a vector 16             |  |
| 1.3 | Matr                  | ix calculation 17                    |  |
|     | 1.3.1                 | Define a matrix 17                   |  |
|     | 1.3.2                 | Matrix Operations 18                 |  |

# 2.1 A simple calculation

## **2.1.1** Variables in MATLAB

To create a variable, we use the simple structure: **variable = definition** without worrying about the type of the variable.

Figure 4.1 illustrates an example of variables under MATLAB.



Figure 2.1: Example of variable reporting under MATLAB.

The name of a variable must contain only alphanumeric characters or the\_ (underscore) symbol, and must begin with an alphabet.

We must also pay attention to capital letters because MATLAB is case sensitive (**A** and **a** are two different identifiers).

## 2.1.2 Numbers in MATLAB

- MATLAB uses conventional decimal notation, with an optional decimal point '.' and the sign '+' or '-' for signed numbers.
- Scientific notation uses the letter 'e' to specify the power scale factor of 10.
- Complex numbers use the characters ' i 'and ' j '(indifferently) to designate the imaginary part.

There are five main types of variables in MATLAB: integers, reals, complexes, strings, and logical type.

» a = 1.3; »b = 3+i; »c = 'hello'; »d= logical(1); »e = int8(2);

a represents a real,

- *b* a complex,
- -c a string,
- *d* is a logical variable (1=TRUE)
- *e* is an integer encoded on 8 bits.

The type of these different variables can then be checked using the **whos** function (See Figure 2.2).



Figure 2.2: Example of variable reporting under MATLAB.

MATLAB always uses real numbers (double precision) to do the calculations, which makes it possible to obtain a calculation accuracy of up to 16 significant digits.

However, the following points should be noted:

- The result of a calculation operation is by default displayed with four digits after the decimal point.
- To display more digits, use the long format command (14 digits after the decimal point).
- To return to the default view, use the **short format** command.
- To display only 02 digits after the comma, use the **format bank** command.

- To display numbers as a ration, use the **format rat** command. Table 2.1 provides a summary:

| Orders       | Meaning                                           |
|--------------|---------------------------------------------------|
| short format | Displays numbers with 04 digits after the decimal |
|              | point                                             |
| Long format: | Displays numbers with 14 digits after the decimal |
| -            | point                                             |
| bank format  | Displays numbers with 02 digits after comma       |
| rat format   | Displays numbers as a ration (a/b)                |
|              |                                                   |

Table 2.1: Calculation accuracy.

## **2.1.3** Basic arithmetic operations

 Transactions
 Meaning

 +
 Addition

 Subtraction

 \*
 A multiplication

 /
 La division

 \
 Left division (or reverse division)

 ^
 Power

 '
 The transposed

 ()
 The parenthesis

The basic operations in an expression are summarized in Table 2.3.

Table 2.2: Basic operations under MATLAB.

## 2.1.4 Predefined Mathematical Functions

Some mathematical functions are illustrated are Table 2.3.

## 2.2 Vector calculation

## 2.2.1 Define a vector

A vector in MATLAB is a collection of elements of the same type. The simplest method to define a vector is to give its explicit description using the [] command, for example:

```
»vec1 = [1 2 11 0 0.3]
vec1 =
1.0000 2.0000 11.0000 0.0000 0.3000
A column vector can also be defined using the;
```

| Function     | usage                               |
|--------------|-------------------------------------|
| exp(x)       | exponential of x                    |
| log(x)       | natural logarithm of x              |
| log10(x)     | base 10 logarithm of x              |
| $x \wedge n$ | x raised to the power n             |
| sqrt(x)      | square root of x                    |
| abs(x)       | absolute value of x                 |
| sign(x)      | 1 if $x > 0$ and 0 if $x \le 0$     |
| sin(x)       | sine of x                           |
| cos(x)       | cosine of x                         |
| tan(x)       | tangent of x                        |
| asin(x)      | inverse sine of x (arcsin of x)     |
| sinh(x)      | hyperbolic sine of x                |
| asinh(x)     | inverse hyperbolic sine of x        |
| round(x)     | nearest integer to x                |
| floor(x)     | default rounding of x               |
| ceil(x)      | rounding up of x                    |
| rem(m,n)     | remainder of the division of m by n |
| lcm(m,n)     | least common multiple of m and n    |
| gcd(m,n)     | greatest common divisor of m and n  |
| factor(n)    | prime factorization of n            |
| conj(z)      | complex conjugate of z              |
| abs(z)       | modulus (magnitude) of z            |
| angle(z)     | argument (angle) of z               |
| real(z)      | real part of z                      |
| imag(z)      | imaginary part of z                 |

Table 2.3: Predefined mathematical functions in MATLAB.

»vec2 = [1; 2; 3;4 ] vec2 = 1.0000 2.0000 3.0000 4.0000

## 2.2.2 Vector Operations

#### 2.2.2.1 Vector concatenation

Two vectors can be concatenated: »A = [1 2 3 4 5 6];

»B=[11 12 13]; »C=[A B] C= 1 2 3 4 5 6 11 12 13

#### 2.2.2.2 Vector Conversion

You can convert a row vector to a column or vice versa using transpose.

»A= [1 2 11 0 0.3]; »B =A' B= 1.0000 2.0000 11.0000 0.0000 0.3000

#### 2.2.2.3 Vector size

The *length()* function returns the size of a vector:

»A= [1 2 11 0 0.3]; length(A) ans= 5

#### 2.2.2.4 Generation of a vector of spaced elements

To generate a line vector of *n* elements linearly spaced between *a* and *b*, the *linspace*(*a*,*b*,*n*) function can be used:

```
»x=linspace(-5,5,7);
x=
-5.0000 -3.3333 -1.6667 0 1.6667 3.3333 5.0000
Another method for generating linearly spaced vectors is to use [a:s:b]. We then create a
```

vector between a and b with a spacing s: »vec=[1 :2 :10]

Vec= 1 3 57 9

#### 2.2.2.5 Special vectors predefined in MATLAB

• *ones*(1,*n*): line vector of length *n* all elements of which are equal to 1.

```
»X=ones(1.5) X
=
1 1 1 1 1 1
```

• *zeros*(1,*n*): line vector of length *n* all elements of which are equal to 0.

»Y=zeros(1,4) Y = 0 0 0 0

• *rand*(1,*n*): line vector of length *n* whose elements are randomly generated between 0 and 1.

```
»Z=rand(1.6)
Z =
0.8147 0.0975 0.1576 0.1419 0.6557 0.7892
```

#### 2.2.2.6 Arithmetic operations

The usual algebraic operations +, -, \*, / should be taken with caution for vectors. Sum and difference are term-to-term operations, and therefore require vectors of the same dimension. The product \* is the matrix product. We will come back to this in the section on matrices. To use multiplication or division terms to terms we must replace \* by .\* and / by ./

In the same way as for scalars, all the mathematical functions previously defined for vectors can be applied.

Vector-specific mathematical functions:

There are also commands that are vector-specific (see Table 2.5)

| Functions | use                                                    |
|-----------|--------------------------------------------------------|
| sum(x)    | sum of the elements of vector x                        |
| prod(x)   | produces elements of vector x                          |
| max(x)    | largest element of vector x                            |
| min(x)    | smallest element of vector x                           |
| mean(x)   | average of the elements of the vector x                |
| spell(x)  | orders the elements of the vector x in ascending order |
| fliplr(x) | reverses the order of the elements of vector x         |

Table 2.4: Vector-specific mathematical functions.

#### 2.2.3 Manipulate a vector

It is also important to become familiar with vector manipulation, i.e. being able to extract subsets using clues. The  $k^{th}$  element of a vector A can be displayed using the command A(k). k must be an integer otherwise MATLAB will return an error:

»A=[1 4 5 6 9 3 10 11]; » A(3) ans= 5 » A(2.3) Subscript indices must be real positive integers or logical. Index vectors can also be used to extract a sub-vector: »B=[1 2 0 3 5 6 9 3 10 11 15 16];

»B=[1203569310111516]; »B(3:7) ans=0 3 5 6 9

# 2.3 Matrix calculation

## 2.3.1 Define a matrix

A matrix will be defined in a similar way to a vector with the command []. The matrix *X* is defined:

$$X = \begin{pmatrix} 0 & 8 & 1 & 9 \\ 1 & 3 & 7 & 6 \\ 4 & 0 & 11 & 2 \end{pmatrix}$$

»X=[0 8 1 9; 1 3 7 6; 4 0 11 2] X= 0 8 1 9

A matrix is composed of *m* rows and *n* columns. If we want to know the value of *m* or *n*, we use the **size(X)** command:

```
»X=[0 8 1 9; 1 3 7 6; 4 0 11 2]
X=
0 8 1 9
1 3 7 6
4 0 5 2
»[m n]=size(X)
m=3
n = 4
```

A *block* matrix can be constructed very simply. If A, B, C, D designate 4 matrices (with compatible dimensions), we define the blocks matrix: (A = B)

 $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ 

by the instruction **M** = **[A B; C D]**.

»A=[1 2; 3 4]; »B=[5 6;7 8]; »C=[ 9 10; 11 12]; »D=[13 14; 15 16]; »M = [A B; C D] M= 1 2 5 6 3 4 7 8 9 10 13 14 11 12 15 16

## 2.3.2 Matrix Operations

#### Addition and subtraction operations

These operations are only possible on matrices of identical size. These are term-to-term operations, similar to scalar operations. For example:  $\begin{pmatrix} -1 & 5 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 2 & 3 \\ -4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 8 \\ -4 & 3 \end{pmatrix}$ 

»A=[-1 5;0 2]; »B=[2 3;-4 1]; »C= A+B C= 1 8 -4 3

#### The product operation

On the other hand, multiplication deserves special attention. There are two types of multiplication: so-called matrix multiplication and term-to-term multiplication.

*Term-to-term multiplication*: is the analog of addition and subtraction seen above. Under MATLAB, it is scored specifically to distinguish it from true matrix multiplication: A.\*B.

»A=[-1 5;0 2]; »B=[2 3;-4 1]; »C= A.\*B C= -2 15 0 2

Similarly, if it is desired to obtain the square of a matrix (in the sense of the product terms to terms of this matrix by itself) we write A.^2

»A=[-1 5;0 2]; »C= A.^2 ans= 1 25 0 4

*The matrix product*: it is a (non-commutative) product between the matrix *A* of size  $m \times n$  and the matrix *B* of size  $n \times p$  is a matrix C = AB of size  $m \times p$  (See Figure 2.3. So that this

product is defined, it is necessary that the number of columns of *A* is equal to the number of rows of *B*. If we note the elements of A:  $a_{ij}$ , and those of *B*:  $b_{ij}$ , then the elements of the matrices *C* are given by the following formula:  $c_{ij} = \sum_{0 < k < n} a_{ik} b_{kj}$ 



Figure 2.3: Matrix Product Principal.

Figure 2.4 shows an example of the matrix multiplication principle.

Under MATLAB, the matrix product is calculated by simply using the sign A\*B: »A = [4 2; 0 1]; »B = [1 2 3; 5 4 6]; »C=A\*B C = 14 16 24 5 4 6 Inverse operation and division We denote  $A^{-1}$ , the inverse of A (when it exists) and we define  $A^{-1}$  by:  $A^{-1}A = AA^{-1} = I$ where *I* is the identity matrix. »A = [4 2; 0 1]; X = inv(A)Х= 0.2500 -0.5000 0 1.0000 The division is defined from the reverse:  $A/B = AB^{-1}$ It therefore requires that *B* be invertible and that the dimensions of *A* and *B* be compatible. »A = [4 2; 0 1]; »B = [1 2; 5 4]; >C = A/BC= -1.0000 1.0000 0.8333 -0.1667

#### Matrix-specific functions

As for vectors, there are predefined matrices:



Figure 2.4: Example of the matrix product between two matrices *A* and *B*.

| Function   | use                                                            |
|------------|----------------------------------------------------------------|
| eye(n)     | the identity matrix (square of size n)                         |
| ones(m,n)  | the matrix with m rows and n columns of which all the elements |
|            | are equal to 1                                                 |
| zeros(m,n) | the matrix with m rows and n columns of which all the elements |
|            | are equal to 0                                                 |
| rand(m,n)  | a matrix with m rows and n columns whose elements are          |
|            | generated                                                      |
|            | randomly between 0 and 1.                                      |
| magic(n)   | a magic matrix of dimension n.                                 |

Table 2.5: Predefined functions specific to the mat