Calculating with MATLAB

Contents

1.1 Simple calculation 11

1.1.1 Variables in MATLAB 11
1.1.2 Numbers in MATLAB 11
1.1.3 Basic arithmetic operations 13
1.1.4 Predefined mathematical functions 13

1.2 Vector calculation 13

1.2.1 Define a vector 13
1.2.2 Vector Operations 14
1.2.3 Manipulating a vector $\quad 16$
1.3 Matrix calculation 17
1.3.1 Define a matrix 17
1.3.2 Matrix Operations 18

2.1 A simple calculation

2.1.1 Variables in MATLAB

To create a variable, we use the simple structure: variable = definition without worrying about the type of the variable.

Figure 4.1 illustrates an example of variables under MATLAB.

Figure 2.1: Example of variable reporting under MATLAB.

The name of a variable must contain only alphanumeric characters or the_ (underscore) symbol, and must begin with an alphabet.

We must also pay attention to capital letters because MATLAB is case sensitive (A and a are two different identifiers).

2.1.2 Numbers in MATLAB

- MATLAB uses conventional decimal notation, with an optional decimal point '.' and the sign ' + ' or ' - ' for signed numbers.
- Scientific notation uses the letter ' \mathbf{e} ' to specify the power scale factor of 10.
- Complex numbers use the characters ' \mathbf{i} 'and ' \mathbf{j} '(indifferently) to designate the imaginary part.
There are five main types of variables in MATLAB: integers, reals, complexes, strings, and logical type.

$$
\begin{aligned}
& » \mathrm{a}=1.3 ; \\
& \text { »b= 3+i; } \\
& \text { »c = 'hello'; } \\
& \text { »d= logical(1); } \\
& \text { »e = int8(2); }
\end{aligned}
$$

- a represents a real,
- b a complex,
- c a string,
$-d$ is a logical variable ($1=$ TRUE)
$-e$ is an integer encoded on 8 bits.
The type of these different variables can then be checked using the whos function (See Figure 2.2).

Figure 2.2: Example of variable reporting under MATLAB.
MATLAB always uses real numbers (double precision) to do the calculations, which makes it possible to obtain a calculation accuracy of up to 16 significant digits.

However, the following points should be noted:

- The result of a calculation operation is by default displayed with four digits after the decimal point.
- To display more digits, use the long format command (14 digits after the decimal point).
- To return to the default view, use the short format command.
- To display only 02 digits after the comma, use the format bank command.
- To display numbers as a ration, use the format rat command. Table 2.1 provides a summary:

Orders	Meaning
short format	Displays numbers with 04 digits after the decimal point
Long format:	Displays numbers with 14 digits after the decimal point
bank format	Displays numbers with 02 digits after comma
rat format	Displays numbers as a ration $(\mathrm{a} / \mathrm{b})$

Table 2.1: Calculation accuracy.

2.1.3 Basic arithmetic operations

The basic operations in an expression are summarized in Table 2.3.

Transactions	Meaning
+	Addition
-	Subtraction
$*$	A multiplication
\nearrow	La division
\swarrow	Left division (or reverse division)
\wedge	Power
\lrcorner	The transposed
()	The parenthesis

Table 2.2: Basic operations under MATLAB.

2.1.4 Predefined Mathematical Functions

Some mathematical functions are illustrated are Table 2.3.

2.2 Vector calculation

2.2.1 Define a vector

A vector in MATLAB is a collection of elements of the same type. The simplest method to define a vector is to give its explicit description using the [] command, for example:
»vec1 = [llllll 211100.3]
vec1 =
$\begin{array}{lllll}1.0000 & 2.0000 & 11.0000 & 0.0000 & 0.3000\end{array}$
A column vector can also be defined using the;

Function	usage
$\exp (x)$	exponential of x
$\log (\mathrm{x})$	natural logarithm of x
$\log 10(\mathrm{x})$	base 10 logarithm of x
$x \wedge n$	x raised to the power n
$\mathbf{s q r t}(\mathbf{x})$	square root of x
$\operatorname{abs}(\mathbf{x})$	absolute value of x
$\boldsymbol{\operatorname { s i g n }}(\mathrm{x})$	1 if $\mathrm{x}>0$ and 0 if $\mathrm{x} \leq 0$
$\boldsymbol{\operatorname { s i n }}(\mathrm{x})$	sine of x
$\boldsymbol{\operatorname { c o s }}(\mathrm{x})$	cosine of x
$\boldsymbol{\operatorname { t a n } (\mathrm { x })}$	tangent of x
$\operatorname{asin}(\mathbf{x})$	inverse sine of $x(\arcsin$ of $x)$
$\boldsymbol{\operatorname { s i n h }}(\mathrm{x})$	hyperbolic sine of x
$\operatorname{asinh}(\mathbf{x})$	inverse hyperbolic sine of x
round(\mathbf{x})	nearest integer to x
floor (x)	default rounding of x
$\operatorname{ceil}(\mathbf{x})$	rounding up of x
$\operatorname{rem}(\mathbf{m}, \mathbf{n})$	remainder of the division of m by n
$\operatorname{lcm}(\mathbf{m}, \mathrm{n})$	least common multiple of m and n
$\boldsymbol{\operatorname { g c d }}(\mathbf{m}, \mathbf{n})$	greatest common divisor of m and n
factor(n)	prime factorization of n
$\operatorname{conj}(\mathrm{z})$	complex conjugate of z
abs(z)	modulus (magnitude) of z
angle(z)	argument (angle) of z
real(z)	real part of z
imag(z)	imaginary part of z

Table 2.3: Predefined mathematical functions in MATLAB.

```
»vec2 = [1; 2; 3;4]
vec2 =
1.0000
2.0000
3.0000
4 . 0 0 0 0
```


2.2.2 Vector Operations

2.2.2.1 Vector concatenation

Two vectors can be concatenated:

```
»A=[[1 2 3 4 5 6];
>B=[11 12 13];
"C=[A B]
C=
1
```


2.2.2.2 Vector Conversion

You can convert a row vector to a column or vice versa using transpose.

```
»A=[11 2 11 0 0.3];
»B =A'
B=
1.0000
2.0000
11.0000
0.0000
0.3000
```


2.2.2.3 Vector size

The length() function returns the size of a vector:

```
»A= [1 2 11 0 0.3];
length(A)
ans=
5
```


2.2.2.4 Generation of a vector of spaced elements

To generate a line vector of n elements linearly spaced between a and b, the linspace (a, b, n) function can be used:

```
"x=linspace(-5,5,7);
x=
-5.0000 -3.3333 -1.6667 0 1.6667 3.3333 5.0000
```

Another method for generating linearly spaced vectors is to use [a:s:b]. We then create a vector between a and b with a spacing s :
»vec=[1:2:10]
Vec=
13579

2.2.2.5 Special vectors predefined in MATLAB

- ones $(1, n)$: line vector of length n all elements of which are equal to 1 .

```
» X=ones(1.5) X
=
1}1014114
```

- zeros $(1, n)$: line vector of length n all elements of which are equal to 0 .
» $\mathrm{Y}=$ zeros $(1,4)$
$\mathrm{Y}=$
$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$
- $\operatorname{rand}(1, n)$: line vector of length n whose elements are randomly generated between 0 and 1 .

```
»Z=rand(1.6)
Z=
0.8147
```


2.2.2.6 Arithmetic operations

The usual algebraic operations $+,-,{ }^{*}, /$ should be taken with caution for vectors. Sum and difference are term-to-term operations, and therefore require vectors of the same dimension. The product * is the matrix product. We will come back to this in the section on matrices. To use multiplication or division terms to terms we must replace * by .* and / by ./

In the same way as for scalars, all the mathematical functions previously defined for vectors can be applied.

```
»A = [1 1 3 5 6]; B = [l10 20 30 40];
»A+B
ans=11
» A-B
ans= -9 -17 -25 -34
»A.* B
ans= 10
#B./A
ans= 10.0000 6.6667 6.0000 6.6667
```

Vector-specific mathematical functions:
There are also commands that are vector-specific (see Table 2.5)

Functions	use
$\operatorname{sum}(\mathbf{x})$	sum of the elements of vector x
$\operatorname{prod}(\mathbf{x})$	produces elements of vector x
$\boldsymbol{\operatorname { m a x } (\mathbf { x })}$	largest element of vector x
$\boldsymbol{\operatorname { m i n } (\mathbf { x })}$	smallest element of vector x
$\operatorname{mean}(\mathbf{x})$	average of the elements of the vector x
$\operatorname{spell}(\mathbf{x})$	orders the elements of the vector x in ascending order
fliplr($\mathbf{x})$	reverses the order of the elements of vector x

Table 2.4: Vector-specific mathematical functions.

2.2.3 Manipulate a vector

It is also important to become familiar with vector manipulation, i.e. being able to extract subsets using clues. The $k^{\text {th }}$ element of a vector A can be displayed using the command $A(k)$. k must be an integer otherwise MATLAB will return an error:
»A=[14 4569310 11];
» $\mathbf{A (3)}$
ans= 5
» $\mathbf{A}(2.3)$
Subscript indices must be real positive integers or logical.
Index vectors can also be used to extract a sub-vector:

```
»B=[1 2 0 3 5 6 9 3 10 11 15 16];
#B(3 :7)
ans=0 3 5 5 6 9
```


2.3 Matrix calculation

2.3.1 Define a matrix

A matrix will be defined in a similar way to a vector with the command []. The matrix X is defined:

$$
X=\left(\begin{array}{cccc}
0 & 8 & 1 & 9 \\
1 & 3 & 7 & 6 \\
4 & 0 & 11 & 2
\end{array}\right)
$$

```
»X=[0; % 1 9; 1 3 7 6; 4 0 111 2]
X=
0
1 3 7 6
4 0 5 2
```

A matrix is composed of m rows and n columns. If we want to know the value of m or n, we use the size (\mathbf{X}) command:

```
»X=[0 8 1 9; 1 3 7 6; 4 0 11 2]
```

$\mathrm{X}=$
$\begin{array}{llll}0 & 8 & 1 & 9\end{array}$
$\begin{array}{llll}1 & 3 & 7 & 6\end{array}$
$4 \quad 0 \quad 5 \quad 2$
" $[\mathrm{m} n]=\operatorname{size}(\mathrm{X})$
$\mathrm{m}=3$
$\mathrm{n}=4$

A block matrix can be constructed very simply. If A, B, C, D designate 4 matrices (with compatible dimensions), we define the blocks matrix:

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

by the instruction $\mathbf{M}=[\mathbf{A B} \mathbf{B} \mathbf{D}]$.

```
»A=[1 2; 3 4];
»B=[5 6;7 8];
»C=[ 9 10; 11 12];
»D=[13 14;15 16];
»M = [A B; C D]
M=
1 2 5 6
3 4 7 8
9
1112 15 16
```


2.3.2 Matrix Operations

Addition and subtraction operations

These operations are only possible on matrices of identical size. These are term-to-term operations, similar to scalar operations. For example:

$$
\left(\begin{array}{cc}
-1 & 5 \\
0 & 2
\end{array}\right)+\left(\begin{array}{cc}
2 & 3 \\
-4 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 8 \\
-4 & 3
\end{array}\right)
$$

```
»A=[-1 5;0 2];
»B=[2 3;-4 1];
»C= A+B
C=
    1 8
-4 3
```


The product operation

On the other hand, multiplication deserves special attention. There are two types of multiplication: so-called matrix multiplication and term-to-term multiplication.

Term-to-term multiplication: is the analog of addition and subtraction seen above. Under MATLAB, it is scored specifically to distinguish it from true matrix multiplication: A.*B.
» $\mathrm{A}=[-1$ 5;0 2];
» $\mathrm{B}=\left[\begin{array}{ll}2 & 3 ;-4 \\ 1\end{array}\right] ;$
» $\mathrm{C}=\mathrm{A} .{ }^{*} \mathrm{~B}$
$\mathrm{C}=$
-2 15
$0 \quad 2$
Similarly, if it is desired to obtain the square of a matrix (in the sense of the product terms to terms of this matrix by itself) we write $\mathrm{A} .{ }^{\wedge} 2$

```
»A=[-1 5;0 2];
»C= A.^2
ans=
1 25
04
```

The matrix product: it is a (non-commutative) product between the matrix A of size $m \times n$ and the matrix B of size $n \times p$ is a matrix $C=A B$ of size $m \times p$ (See Figure 2.3. So that this

Chapter 2: Calculating with Matlab

 product is defined, it is necessary that the number of columns of A is equal to the number of rows of B. If we note the elements of A : $a_{i j}$, and those of B : $b_{i j}$, then the elements of the matrices C are given by the following formula: $c_{i j}=\Sigma_{0<k<n} \quad \boldsymbol{a}_{i k} \boldsymbol{b}_{\boldsymbol{k j}}$

Figure 2.3: Matrix Product Principal.
Figure 2.4 shows an example of the matrix multiplication principle.
Under MATLAB, the matrix product is calculated by simply using the sign $\mathrm{A}^{*} \mathrm{~B}$:

```
»A = [4 2; 0 1];
»B=[1 2 3; 5 4 6];
»C=A*B
C=
14 16 24
5 4 6
```


Inverse operation and division

We denote A^{-1}, the inverse of A (when it exists) and we define A^{-1} by:
$\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{A} \boldsymbol{A}^{-1}=\boldsymbol{I}$ where I is the identity matrix.
» $\mathrm{A}=[42 ; 01]$;
» $\mathrm{X}=\operatorname{inv}(\mathrm{A})$
$X=$
$0.2500-0.5000$
$0 \quad 1.0000$
The division is defined from the reverse: $\boldsymbol{A} / \boldsymbol{B}=\boldsymbol{A} \boldsymbol{B}^{-1}$
It therefore requires that B be invertible and that the dimensions of A and B be compatible.
$\left.\begin{array}{l}» \mathrm{~A}=\left[\begin{array}{lll}4 & 2 ; & 0\end{array}\right] ; \\ » \mathrm{~B}=\left[\begin{array}{ll}1 & 2 ;\end{array} 54\right.\end{array}\right] ;$

Matrix-specific functions

As for vectors, there are predefined matrices:

Figure 2.4: Example of the matrix product between two matrices A and B.

Function	use
eye (n)	the identity matrix (square of size n)
ones (m, n)	the matrix with m rows and n columns of which all the elements are equal to 1
zeros(m,n)	the matrix with m rows and n columns of which all the elements are equal to 0
rand(m,n)	a matrix with m rows and n columns whose elements are generated randomly between 0 and 1.
magic (n)	a magic matrix of dimension n.

Table 2.5: Predefined functions specific to the mat

