

C
ha

pt
er

 3 _
Programing with MATLAB

Contents
3.1 Comparison operators and logical operators 22
3.2 Control instructions 22

3.2.1 The if statement ... 22
3.2.2 The switch instruction .. 23
3.2.3 Loop While ... 24
3.2.4 Loop for ... 24
3.2.5 Summary Exercise .. 25

3.3 Functions 26
3.3.1 Creating a function in an M-Files .. 26
3.3.2 Comparison between a program is a function .. 26

3.4 Graphics and data visualization 29
3.4.1 The plot function .. 29
3.4.2 The function figure .. 29
3.4.3 Appearance of a curve .. 30
3.4.4 Multi-function graph .. 31

Chapter 3: Programming with Matlab 22

Dr. Nour El-Houda GOLEA nh.golea@univ-batna.dz

Programming Tools for Mathematics

3.1 Comparison operators and logical operators
The comparison operators in MATLAB are illustrated in Table 3.1.

Operator Meaning
> Greater than
< smaller than
>= Greater than or equal to
<= less than or equal to
== equals
∼ = different about

Table 3.1: Comparison operators.

These are binary operators, which return 0 (false) when the relationship is false and 1 (true)
when the relationship is true.

Example:

The comparison can be made to an entire matrix, coefficient by coefficient. Example:

The logical operators are presented in Table 3.2

Table 3.2: Logical operators.

3.2 Check-up instructions

3.2.1 The if statement
The if statement is the simplest and most widely used of the flow control structures. It makes

it possible to orient the execution of the program according to the logical value of a condition. The
general syntax is as follows:

Operator meaning equivalent function
∼

 &
 ironed not(A)

 and and(A,B)
| or or(A,B)

» X= 4
»x>5
Ans
= 0

»A= [1 2 3; 4 5 6; 7 8 9];
»x>=6
ans=
0 0 0
0 0 1
1 1 1

Chapter 3: Programming with Matlab 23

Dr. Nour El-Houda GOLEA nh.golea@univ-batna.dz

Programming Tools for Mathematics

switch (Expression)
case value 1

Instruction Group 1
case value 2

Instruction Group 2
. . .
case value N

Instruction group N
owerwise

Instruction group if all checkboxes failed
end

The if else end structure:

If it is necessary to check several conditions instead of only one, we can use elseif clauses for

each new condition, and at the end we can put an else in the case where no condition has been
evaluated as true. The general syntax is as follows:

3.2.2 The switch statement
The switch statement executes groups of statements according to the value of a variable or

expression. Each group is associated with a case clause that defines whether this group should be
executed or not according to the equality of the value of this case with the evaluation result of the switch
expression.

If all the boxes have not been accepted, it is possible to add a clause otherwise that will be
executed only if no box is executed.

The general structure of this instruction is:

Example: Here is an example of the switch statement

if (Conditions)
Instructions
end

if (Condition 1)
Instructions

elseif (Condition 2)
Instructions
..
..

elseif (Condition n)
Instructions

else
Instructions

end

if (Conditions)
Instructions
else
Instructions
end

Chapter 3: Programming with Matlab 24

Dr. Nour El-Houda GOLEA nh.golea@univ-batna.dz

Programming Tools for Mathematics

n=0
while (n < =20)

sqrt(n)
n = n + 2;

end

while (Conditions)
Instruction 1
Instruction 2
.
.
.
Instruction N

end

The execution will give:
If the user entered for example a value of 30, then the message that will be displayed is: x is

not 0 or 10 or 100.

3.2.3 while loop

The while loop is written as follows:

Example: Write a while loop, which will display the value of √𝑛, for all even integers n

from 0 to 20.

3.2.4 for loop

Instruction for repeats the execution of a group of instructions a determined number of times.
It has the following general form:

x = input (’Enter a number: ’);
switch (Expression)

Case (0)
disp(’x = 0 ’)

Case 10.
disp(’x = 10 ’)

Case 100
disp(’x = 100 ’)

owerwise
disp(’x n”is not 0 or 10 or 100 ’)

end

Chapter 3: Programming with Matlab 25

Dr. Nour El-Houda GOLEA nh.golea@univ-batna.dz

Programming Tools for Mathematics

for (Start:Step:End)
Instruction 1
Instruction 2
.
.
.
Instruction N

end

20

Example: Write a for loop, which will display the value of √𝑛 , for all even integers n from 0 to

3.2.5 Wrap Up Exercise

Write MATLAB scripts to program the following predefined functions: sum (), prod()
and mean () applied for the vectors using the for and while loop.

1. The sum(V) function

2. The prod(V) function

3. The mean function (V)

% The product of the elements of a vector V
n = length(V); % n is the size of the vector V
Product = 1
for i = 1: n

product=product*V(i);
end
disp(product) % View Product

n
for (n = 0 : 2 : 20)

sqrt(n)
end

% The sum of the elements of a vector V
n = length(V); % n is the size of vector V
sum = 0;
for i = 1: n

sum=sum+V(i);
end
disp(sum) % Show sum

% The product of the elements of a vector V
n = length(V); % n is the size of vector V
mean = 0; i=1;
while i<=n
mean = mean+V(i);
end
mean = mean /n;
 disp(mean) % Show mean

Chapter 3: Programming with Matlab 26

Dr. Nour El-Houda GOLEA nh.golea@univ-batna.dz

Programming Tools for Mathematics

3.3 Functions

Creating function files in MATLAB has two purposes:

1. Function files allow the user to define functions that are not among the built-in or predefined
functions of MATLAB and to use them in the same way as the latter (these functions are
called user functions).

2. Function files are also an important element in the programming of applications where
functions play the role of the functions and procedures of the usual programming languages.

A function can have input arguments and output arguments as shown in Figure 3.1.

Figure 3.1: General diagram of a function.

3.3.1 Creating a function in an M-Files

It is possible to create our own functions by writing their source codes in M-Files (with the
same function name) using the following syntax:

Where S1, S2,...,Sm are the return values (results) and E1, E2,...,En.
Example: Write a function named Calculation that calculates the sum and product of the

square roots of two positive integers a and b.
Figure 3.2 illustrates one solution.
Unlike a script, a function can be used in an expression for example: 4 ∗ Calculation + 5 (See

Figure 3.3).

3.3.2 Comparison between a program is a function
To explain the difference between a MATLAB script and a function, Figure 3.4 shows the

same example explained previously but using a script named Calcul_1.

function [S1, S2, ..., Sm] = function name (E1, E2, ..., En)
% the body of the function
S1 = . . . % the returned value for S1 S2 =
. . . % the returned value for S2
...
Sm = . . . % the value returned for Sm
end % the end is optional

Chapter 3: Programming with Matlab 27

Dr. Nour El-Houda GOLEA nh.golea@univ-batna.dz

Programming Tools for Mathematics

Figure 3.2: Demonstration of the creation and execution of the Calculation function.

Figure 3.3: Demonstration of the creation and execution of the Calculation function.

Chapter 3: Programming with Matlab 28

Dr. Nour El-Houda GOLEA nh.golea@univ-batna.dz

Programming Tools for Mathematics

Figure 3.4: For demonstration purposes: Execution and use of a script in an expression.

3.4 Graphics and data visualization
MATLAB offers a powerful visualization system that enables the presentation and graphical

display of data in a way that is both efficient and easy. In this section of the course, we will
introduce the essential basics for drawing curves in MATLAB.

3.4.1 The plot function

MATLAB offers powerful features for creating graphics. The simplest display is done using
the plot function.

To draw a curve y = cos(πx) for example, where x=0 :4; just do:

Figure 3.5 illustrates the result of executing the plot function for displaying the curve of the
function y = cos(πx).

»x= [0 :0.1 :4];
»y = cos(πx);
»plot(x,y)

Chapter 3: Programming with Matlab 29

Dr. Nour El-Houda GOLEA nh.golea@univ-batna.dz

Programming Tools for Mathematics

Figure 3.5: Graphical representation of the function y = cos(πx) , where x=0 :4.

3.4.2 The function appears

The management of the different figures is done using the figure function:

— To display several curves on the same figure, the graph is held using the hold on command.
This hold is disabled using the hold off command.

— To save a figure, use the print function.
— The close function closes the active figure while the close all command closes all figures.

Charting and manipulating axes and scales is done by:
• xlabel(‘x-axis’): to give a title to the x-axis,
• ylabel(‘y-axis ’): to give a title to the y-axis,
• title(‘speed evolution’): to give a title to the graph

The figure(1) command creates a new window under MATLAB named Figure 1. We will use
it later if we want to keep this figure and display a second figure(2), etc.

3.4.3 Appearance of a curve
It is possible to manipulate the appearance of a curve by modifying:

— the color of the curve
— the shape of the coordinate points
— the type of line connecting the points.
To do this, we add a new argument (which can be called a marker) of the character string type to the

plot function like this: »plot (x, y, ’marker’)
The content of the marker is a combination of a set of special characters gathered in Table 3.3.
Example:
Modification of the appearance parameters of the curve y = cos(πx) (see Figure 3.6):

»X = [0 :0.1 :4];
»y = cos(πx);
(figure 1).
»plot(X,Y)

Chapter 3: Programming with Matlab 30

Dr. Nour El-Houda GOLEA nh.golea@univ-batna.dz

Programming Tools for Mathematics

Figure 3.6: Modification of the appearance parameters of the function y = cos(πx) , where x=0 :4.
Curve Color

Characters Effect
b or blue blue curve
g or green green curve
r or red red curve
y or yellow yellow curve
k or black blue curve
m or magenta bright purplish curve
c or cyan curve between green and blue

Plot Style
Characters Effect
- online full
: dashed
-. in dashed dot
- - in dashes

Points Representation
Characters Effect
. a point.
◦ a circle •
×

 +
 the symbol ×

 + the + symbol

 * The * symbol

s a square ■

d a diamond ♦
∨ lower triangle ▼
∧ upper triangle ▲
< left triangle ◀
> right triangle ▶

Table 3.3: Parameters for manipulating the appearance of a curve.

»X = [0 :0.1 :4];
»y = cos(πx);
»plot (x, y, ’r: *’)

Chapter 3: Programming with Matlab 31

Dr. Nour El-Houda GOLEA nh.golea@univ-batna.dz

Programming Tools for Mathematics

3.4.4 Multi-function graph
By default in MATLAB, each new drawing with the plot command clears the previous one. To

force a new curve to coexist with previous curves, there are two methods for drawing multiple
curves in the same figure:

1. Use holt on function;
2. Use plot with multiple arguments.

Using the holt on function
If we want to place two curves on the same graph we use the hold on command (to use with

the hold off command.)
For example, to draw the curve of the two functions cos(x) and sin(x) in the same figure, we

can write (see Figure 3.7).

Figure 3.7: Graph of two functions sin(x) and cos(x) with hold on.

Using plot with multiple arguments
We can use plot with several pairs (x,y) or triples (x ,y, ‘marker’) as arguments.

For example, to draw the same previous functions we write (see Figure 3.8):

close all;
x=[0 :0.1 :4];
y1=cos(x);
y2=sin(x);
plot(x,y1,’b-o’)
hold on
plot(x,y2,’r:s’)
xlabel(’Radians’);
ylabel(’Function Value’);
title(’Graph of cos(x) function and sin(x) function’)

Chapter 3: Programming with Matlab 32

Dr. Nour El-Houda GOLEA nh.golea@univ-batna.dz

Programming Tools for Mathematics

Figure 3.8: Graph of two functions sin(x) and cos(x) in plot use with several arguments .

close all;
x=[0 :0.1 :4];
y1=cos(x);
y2=sin(x);
plot(x,y1,’g: * ’,x,y2,’m – s ’)
xlabel(’Radians’);
ylabel(’Function Value’);
title(’Graph of cos(x) function and sin(x) function’)

