Practical Work 3 Matrix manipulation

Exercise 01: Basic Commands

Define matrices: $\begin{array}{cc} A=\left(\begin{array}{cccc} 0 & 8 & 1 & 9 \\ 1 & 3 & 7 & 6 \\ 4 & 0 & 11 & 2 \end{array}\right) & B=\left(\begin{array}{cccccc} 0 & -1 & 2 & -1 & 8 & 7 \\ 6 & -3 & -2 & 0 & 3 & 2 \\ -4 & -1 & 2 & 7 & 8 & 6 \end{array}\right) \\ \mathrm{C}=\left(\begin{array}{llll} 2 & 2 & 1 & 1 \\ 1 & 3 & 1 & 3 \\ 4 & 0 & 4 & 0 \end{array}\right) \end{array}$	"
Extract the first 3 rows and the first 2 columns of A	"
Return the size of matrix B	"
Multiply the two matrices A and B	"
Multiply the matrices B and C element-wise	"
How to generate transpose of A?	"
Define a matrix \mathbf{X} of size 10×4 containing zeros.	"
Define a matrix Y of size 13×11 containing ones	"
Fill the first and last row of X with randomly generated values	"
Fill the diagonal of Y with randomly generated values	"

Exercise 2: Create a script named MatrixManipulation to record the following instructions:

1. Define the \mathbf{X} matrix:

$$
X=\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30
\end{array}\right)
$$

2. Extract from this matrix the following matrices:

$$
Y=\left(\begin{array}{cc}
1 & 2 \\
11 & 12 \\
21 & 22
\end{array}\right) \quad Z=\left(\begin{array}{ccc}
8 & 9 & 10 \\
18 & 19 & 20 \\
28 & 29 & 30
\end{array}\right) \quad U=\left(\begin{array}{cc}
3 & 7 \\
23 & 27
\end{array}\right)
$$

3. Extract from the matrix \boldsymbol{X} the matrix \boldsymbol{V} obtained by taking from X one column out of 2 .
4. Construct the following matrices:

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 3 & 2 \\
0 & 1 & 1
\end{array}\right) \quad B=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

5. Build the matrix \mathbf{C} defined by blocks as:

$$
C=\left(\begin{array}{cc}
3 A & B \\
A & -A
\end{array}\right)
$$

6. Using the diag function, construct the diagonal matrix \boldsymbol{D} of the same format as the matrix \boldsymbol{A} and whose diagonal terms are equal to those of \boldsymbol{A}.
7. Build the row vector \mathbf{V} with 5 components uniformly distributed between -1 and 1 .
8. Construct the row column \boldsymbol{W} of 6 components containing odd numbers greater than or equal to 7 .
9. Insert the vector \boldsymbol{V} in the third row of the matrix \boldsymbol{C}.
10. Insert vector \boldsymbol{W} in the last column of \boldsymbol{C}.

Home Work: questions from 6 to 10.
\% MATLAB code: Manipulation of matrices

