Practical Work 4

Programming with MATLAB

Exercise 01:

Create a script named Conditional_Structures to record the following instructions:

1. Use a for loop to multiply all even numbers from 2 to 20.
2. Use a while loop to multiply all odd numbers from 2 to 20.
3. Assign the values 10, 20, 30, 40, and 50 to a vector \mathbf{V} using a for loop.
4. Assign the values 60, 70, 80, 90, and 100 to a vector \mathbf{W} using a while loop.
5. Is there a simpler way to do this without using loops?
6. Given a vector $\mathbf{A}=\left[\begin{array}{ll}1 & 8 \\ 3 & 9\end{array}\right.$ 1]: (use
(a) Add up the values of all elements in \mathbf{A}.
(b) Calculate the cumulative sum, i.e., $1 ; 9 ; 12 ; 21 ; 21 ; 22$, of the elements in \mathbf{A}.

Exercise 02:

Create a function named myFactorial that takes as input a number \mathbf{x} and returns as output its factorial.

1. Use the for or while loop to calculate the factorial.
2. Which technique is the fastest? Compare to the time taken by MATLAB's built-in factorial() function. Why is the execution time of built-in functions faster than user-implemented functions?

Exercise 03:

Write a function named Poly that receives as input a vector \mathbf{p} and a vector \mathbf{x}. The output of the function returns a vector \mathbf{y} that calculates the value of the polynomial represented by $\mathbf{p (0) + \mathbf { p (1) x + }} \mathbf{+}$ $p(2) \mathbf{x}^{2}+p(3) x^{3}+\ldots$ at each of the points given by the vector \mathbf{x}.
Use your function to plot the graph of $\mathbf{p}(\mathbf{x})=\mathbf{x}^{\mathbf{2}}+\mathbf{1}$ over the interval $[-4,4]$.

