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Chapter 02: Data Representation 

1. Introduction 

1.1. Representation of Data Processed by Computers 

The information processed by a computer can be in different formats 

(text, numbers, images, sound, videos, etc.), but it is always represented and 

manipulated by the computer in digital form. In fact, all information are 

processed as a sequence of 0s and 1s. The unit of information is the binary 

digits (0 and 1) known as bits (short for binary digit). 

Binary representation is used because it is simple and technically easy 

to implement using bistables (systems with two stable states realized with 

transistors). 

The data encoding refers to the process of converting information from 

one format (text, image, etc.)  into another (internal machine representation, 

which is always a sequence of bits), typically in a more suitable representation 

for storage, transmission, or processing. This transformation ensures that data 

can be efficiently and accurately handled by computer systems, 

communication networks, or other devices. 

1.2. Quantity of processed Data 

The basic unit of measure for the quantity of data in computer science 

is the bit, where a bit can take the value 0 or 1. 

Question: How many states can be represented with 3 bits? with 4 

bits? and with n bits in general? 

• With 3 bits, we can represent 23 = 8 different states. 

• With 4 bits, we can represent 24 = 16 different states. 

• And with n bits in general, we can represent 2n different states. 

Each group of 8 bits constitutes 1 Byte, symbolized by B. 

Also:  

❖ 210 bits = 1024 bits = 1 Kbits        /  210 B = 1024 B = 1 KB (1 Kilo BYTE) 

❖ 210 Kbits = 1024 Kbits = 1 Mbits  / 210 KB = 1024 KB = 1 MB (1 Méga BYTE) 

❖ 210 Mbits = 1024 Mbits = 1 Gbits  / 210 MB = 1024 MB = 1 GB (1 Giga BYTE) 

❖ 210 Gbits = 1024 Gbits = 1 Tbits  /  210 GB = 1024 GB = 1 TB (1 Téra BYTE) 

Question: Convert 2 GB to bits and then to Kbits? 
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It is clear that data is processed in binary form in a computer, whether 

it is text (associated with standardized codes for each character), images 

(associated with codes for each pixel's color in the image), sound (associated 

with codes for each sound frequency), …etc. Therefore, it is essential to take 

a closer look at the manipulation of binary data and its relationship with other 

Numeral systems. 

2. Numeral systems 

Over time, several Numeral systems (also known as numbering 

systems) have emerged. From the Mesopotamian positional system (where 

the position of the digit indicates its place value, similar to the Arabic 

numeration we use today) to the Egyptian and Roman additive systems 

(where the represented number is the sum of the symbols), to the Chinese 

system, which excelled in calculations (with the invention of the abacus) and 

is also positional, …etc. 

Example: Egyptian numeration 
    

 

 

 

 = 345 

 

2.1. Representation 

A number: (XXX)b indicates the representation of a number XXX in base b. 

The common base we know and use every day is base 10 (decimal system) 

for representing various quantities, digits, and numbers (currency, phone 

numbers, sizes, dates, etc.), and base 60 (sexagesimal system) for representing 

time. 

How is a number represented in a base b? 

1. If b ≤ 10, we simply use the digits from 0 to b-1. 

Example: Base 8 (octal system): Any number will be a combination of digits 

belonging to the set {0, ..., 7}. 

2. If b > 10, we simply use the digits from 0 to 9, and then use letters in 

alphabetical order. 
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Example: Base 16 (hexadecimal system): Any number will be a combination 

of symbols belonging to {0, ..., 9, A, B, C, D, E, F}, where (A=10, ..., F=15). 

So, each numeral system uses a set of symbols (digits) to represent different 

numbers. The number of these digits is always equal to the base of the numeral 

system itself. In other words, the base of the numeral system is equal to the 

cardinality of the set of symbols used in that base. 

Example: 

• In binary, base of the binary system = 2; set of symbols used: A = {0, 1}, 

Card (A) = 2 = base of the binary system. 

• In octal, base of the octal system = 8; set of symbols used: A = {0, 1, 2, 3, 

4, 5, 6, 7}, Card (A) = 8 = base of the octal system. 

So: 

• A number with n digits (symbols) is represented as a sequence (ai), where    

0 ≤ i ≤ n-1:   an-1 ... a1 a0 

where a0 is the least significant digit and an-1 is the most significant digit. 

Example: Let's consider: 10011101. 

 

 
 

 

The numeral systems that interest us in the field of computer science 

are: decimal, binary, octal, and hexadecimal. 

 

  

Most significant bit 

1 0 0 1 1 1 0 1 

Least significant bit 7 6 5 4 3 2 1 0 
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2.2. The decimal system 

The decimal system, also known as the base-10 system, is the most 

commonly used numbering system in everyday life. It uses ten different 

digits to represent numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Each digit's value 

is determined by its position within the number, and the system is positional. 

 

In the decimal system, the rightmost digit represents the units place, the 

next digit to the left represents the tens place, then the hundreds, and so on, 

with each position representing increasing powers of 10. 

For instance, the number 9745 in the decimal system can be interpreted as: 

• 9745 = 9×1000 + 7×100 + 4×10 + 5×1 

• 9745 = 9×103 × 7×102 + 4×101 + 5×100 

We notice that each digit of the number is multiplied by a power of 10. 

This power represents the weight of the digit. 

9 7 4 5 

3 2 1 0 

 
 

The exponent of this power is zero for the rightmost digit and 

increases by one for each digit to the left. 

Note: This way of writing numbers is called a positional numeral 

system. It is applicable to all the numeral systems we will see in this course 

(decimal, binary, octal, and hexadecimal). 

2.3. The octal system 

Following what we mentioned in section 2.1, the octal system uses a 

numbering system with a base of 8 (octal: Latin octo=eight) and, therefore 

uses 8 symbols: from 0 to 7. Thus, a number expressed in base 8 will be 

represented in the following way, for example: (745)8. 

Reminder: When writing a number, it is essential to specify the base 

in which it is expressed to avoid any ambiguity (for example, 745 also exists 

in base 10). Thus, the number will be enclosed in parentheses (745 in our 

example) and indexed with a number representing its base (8 is placed as an 

Low weight heavy weight 
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index). By convention, when the base is not explicitly stated, it is assumed to 

be 10 by default. 

2.4. The binary system 

As we saw earlier, in the binary system, each digit can only have one 

of two values: 0 or 1. Therefore, the system has a base of 2. 

Example: Representation of numbers from 0 to 16 in decimal and their 

equivalents in binary and octal. 

(Decimal system)10 (Octal system)8 (Binary system)2 

0 0 0 

1 1 1 

2 2 10 

3 3 11 

4 4 100 

5 5 101 

6 6 110 

7 7 111 

8 10 1000 

9 11 1001 

10 12 1010 

11 13 1011 

12 14 1100 

13 15 1101 

14 16 1110 

15 17 1111 

16 20 10000 
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2.5. The hexadecimal system 

 The hexadecimal system uses the following 16 symbols: 0, 1, 2, 3, 4, 

5, 6, 7, 8, 9, A, B, C, D, E, and F. Therefore, the system has a base of 16. 

Example: If we revisit the previous table but with decimal values and 

their equivalents in binary and hexadecimal, we will have: 

 

(Decimal system)10 (Hexadecimal system)16 (Binary system)2 

0 0 0 

1 1 1 

2 2 10 

3 3 11 

4 4 100 

5 5 101 

6 6 110 

7 7 111 

8 8 1000 

9 9 1001 

10 A 1010 

11 B 1011 

12 C 1100 

13 D 1101 

14 E 1110 

15 F 1111 

16 10 10000 
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3. Conversion between different bases 

3.1. Convert from any base to decimal 

To convert a number from any base to decimal, you can use the positional 

value method. Here's a step-by-step guide: 

1. Write down the number in its original base representation (e.g., binary, 

octal, hexadecimal, etc.). 

2. Identify the base of the number you are converting. For example, binary is 

base 2, octal is base 8, and hexadecimal is base 16. 

3. Assign each digit a positional value based on its position in the number, 

starting from the rightmost digit. The rightmost digit is the least 

significant digit. 

For example, in base 2 (binary): 

• The rightmost digit has a positional value of 20 = 1 (1's place). 

• The next digit to the left has a positional value of 21 = 2 (2's place). 

• The next digit to the left has a positional value of 22 = 4 (4's place). 

And so on. 

For base 8 (octal), each digit's positional value is a power of 8, and for base 

16 (hexadecimal), it is a power of 16. 

4. Multiply each digit by its positional value. 

5. Sum up the results from step 4 to obtain the decimal representation of the 

number. 

Let (an an-1 ...... a2 a1 a0)b be a number expressed in base b. The value of this 

number in decimal is equal to: 

(an × bn) + (an-1 × b(n-1)) + ...... + (a2 × b2) + (a1 × b1) + (a0 × b0) 

For example, let's convert to decimal the binary numbers: (1011)2, (16257)8 

et (F53)16 

1. Binary number: 1011 

2. Base: 2 (binary) 

3. Positional values: 20 = 1, 21 = 2, 22 = 4, 23 = 8 

4. Multiply each digit by its positional value: 1 * 23 + 0 * 22 + 1 * 21 

+ 1 * 20 = 8 + 0 + 2 + 0 = 11 

5. Decimal representation: 11 

So, the binary number 1011 is equal to the decimal number 11.  
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• (1011)2 = (1 × 23 + 0×22 + 1×21 + 1×20)10 = (1×8 + 0×4 + 1×2 + 1×1)10 = (11)10 

• (16257)8 = 1 × 84 + 6×83 + 2×82 + 5×81 + 7×80 = 1×4096 + 6×512 + 2×64 + 5×8 + 7 

= 4096 + 3072 + 128+ 40 + 7     =   (7343)10 

• (F53)16 = 15 × 162 + 5 × 161 + 3 × 160 = 15 × 256 + 5 × 16 + 3 = 3840 + 80 + 3 = (3923)10 

Note: In the case where there is a fractional part a1 a2 ...... an (fractional 

numbers are those that have digits after the decimal point), its value in decimal 

will be equal to the following sum: 

a1 × b-1 + a × b-2 + ……+ an × b-n 

Example: Let's convert the following fractional numbers to decimal: 

(1110,101)2, (642,21)8, and (A3F,C)16 

• (1110,101)2 = (1×23 + 1×22 + 1×21 + 0×20+ 1×2-1 + 0×2-2 + 1×2-3)10  

          = (8 + 4 +  2 + 0 + 1/2 +1/4 + 1/8 )10 = (14,625)10 

• (642,21)8 = (6×82
 + 4×81 + 2×80 + 2×8-1 + 1×8-2)10  

   = ( 6×64 + 4×8 + 2×1 + 2× 0,125 + 1× 0,015625)10 

   = (384 + 32 + 2 + 0.25 + 0.015625)10 = (418.265 625)10 

• (A3F,C)16 =(10×162 + 3×161 + 15×160 + 12×16-1)10  

    = (10×256 + 3×16 + 15×1 + 12× 0,0625)10 

       = (2623.75)10 

 

3.2. Conversion of a decimal number to binary 

To convert a decimal number to a binary number, you can use the 

process of repeated division by 2. Here's a step-by-step guide: 

1. Start with the decimal number you want to convert to binary. 

2. Divide the number by 2 and note the quotient and the remainder. The 

remainder will be the least significant bit (LSB) of the binary 

representation. 
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3. Continue dividing the quotient from step 2 by 2 and note the 

remainders each time. Write down the remainders in reverse order, as 

they will form the binary representation from right to left. 

4. Repeat step 3 until the quotient becomes 0. 

5. The binary representation is the series of remainders obtained in step 3, 

read from right to left. 

For example, let's convert the decimal number 44 to binary: 

• Step 1: Start with 44. 

• Step 2: 44 ÷ 2 = 22 with a remainder of 0 (LSB). 

• Step 3: 22 ÷ 2 = 11 with a remainder of 0. 

• Step 4: 11 ÷ 2 = 5 with a remainder of 1. 

• Step 5: 5 ÷ 2 = 2 with a remainder of 1. 

• Step 6: 2 ÷ 2 = 1 with a remainder of 0. 

• Step 6: 1 ÷ 2 = 0 with a remainder of 1 (MSB). 

The binary representation of 44 is: 

(44)10 = (101100)2 

 

 

 

 

 

 

3.2.1. Conversion of the Fractional Part “Decimal Part” to Binary 

To convert the fractional part of a decimal number to binary, we have 

to follow these steps: 

1. Multiply the fractional part by 2, 

2. Take the whole number part of the result as the first binary digit after 

the decimal point, 

3. Keep the fractional part of the result, 

4. Repeat steps 1 to 3 with the fractional part obtained in step 3 until the 

fractional part becomes zero or until you reach the desired number of 

binary digits after the decimal point. 

44 2 

22 0 2 

11 0 2 

5 1 2 

2 1 2 

1 0 2 

0 1 
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Let's illustrate this with examples: 

Convert the decimal fractional numbers 0.375 and 0.84375 to binary  

 

0,375 × 2 = 0,75    

0,75  × 2 = 1,50  

0,50  × 2 = 1,00  

(0,375)10=(0, 0 1 1)2  

 

  

3.3. The Relationship Between Binary Numbers and Octal Numbers 

First, if we want to obtain the octal expression of a number expressed 

in decimal, we simply need to follow the method of successive division by 8 

(just as we did to convert to base 2) until the obtained quotient is equal to 0. 

The remainders of these divisions, read from bottom to top, represent the octal 

number. 

Example: Let's convert (47)10 to the octal system and the binary 

system. We wil get :  

 

 

 

 

 

 

 

• (47)10 = (57)8 

• (47)10 = (101111)2 

• So      (57)8 = ( 101111 )2 

 

0,84375 × 2 = 1,6875 

0,6875 × 2  = 1,375 

0,375  × 2   = 0,75 

0,75    × 2  = 1,50 

0,50   × 2   = 1,00 

(0,84375)10 = (0,11011)2 

 

47 2 

23 1 2 

11 1 2 

5 1 2 

2 1 2 

1 0 2 

0 1 

47 8 

5 7 8 

0 5 

5   7 
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We can observe that after 3 divisions in binary, we obtain the same 

quotient as after a single division in octal. Furthermore, the first remainder 

obtained in octal can be directly related to the first three remainders in binary. 

• (111)2= 1×22 + 1×21 + 1×20 = 1×4 + 1×2 + 1×1 = (7)8  

And the same goes for the following octal character: 

• (101)2 = 1×22 + 0×21 + 1×20 = 1×4 + 0×2 + 1×1 = (5)8 

This property of equivalence between each octal digit and each group 

of 3 binary digits comes from the fact that 8 is a power of 2: 8 = 23. It allows 

us to easily convert between an octal base system and a binary base system, 

and vice versa. 

 

Example of binary to octal and octal to binary conversion: 

Binary  ( 101 111 100 001)2 

 

 

Octal     (  3     6     2   )8  

 

 

3.4. The relationship between Binary and Hexadecimal Numbers 

If we need to obtain the hexadecimal expression of a number expressed 

in decimal, we must always follow the method of successive division, this 

time by 16 (as we did for converting to bases 2 and 8) until the quotient 

obtained is equal to 0. The remainders of these divisions, read from bottom to 

top, represent the hexadecimal number (taking into account that remainders 

from 10 to 15 are coded as A to F). 

The equivalence property we saw earlier between binary and octal in 

section 3.3 also exists between hexadecimal and binary, as 16 is also a power 

of 2: 16 = 24. Therefore, the rule is the same, but we will work in groups of 4 

binary digits now instead of 3. 

  

Octal   (   5      7     4     1  )8 

Binary  ( 011 101 111 )2 
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     Binaire        ( 1101 0000 1100 )2 

 

   

 Hexadécimal  (   1       A       F        3   )16  

 

 

Remarks: 

1: For the conversion of any whole number from base 10 to any other base, 

we always proceed with successive divisions. We divide the number to be 

converted by the base we want to convert it into, then divide the quotient 

obtained by the base again, and so on until we get a quotient of zero. The 

sequence of remainders obtained corresponds to the digits in the target base. 

 

2: For the conversion of the decimal fractional part to its equivalent octal (or 

hexadecimal), we always proceed with successive multiplications, just as we 

did for the decimal-fractional to binary conversion in section 3.2.1. We 

multiply the fractional part by 8 (or 16), the whole number part of the result 

becomes part of the octal (or hexadecimal) fractional part. Then, the 

fractional part of the result from the multiplication is multiplied again by 8 

(or 16), and so on until we obtain a result equal to 0.00. 

Example : Let's convert the decimal number 418,265625 to octal: 

• 418 ÷ 8 = 52 Remainder 2 0,265 625 × 8 = 2.125 

•  52 ÷ 8 = 6 Remainder 4 0,125 × 8 = 1.00 

•   6 ÷ 8 = 0 Remainder 6 0,00 × 8 = 0.00 

So : 

(418,265 625)10 = (642,21)8 

(In the same way, we proceed for the conversion of the decimal fractional part 

to its hexadecimal equivalent). 

Hexadécimal   (    D      0       C   )16 

     Binaire       (0001 1010  1111  0011 )2 
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4. The basic operations in binary 

4.1. Binary addition and multiplication 

The principle of numerical calculation is the same in positional numeral 

systems. Therefore, we reason in the same way as we do to perform operations 

in the decimal system, where we are accustomed to carrying out our daily 

arithmetic operations. 

Binary Addition  

Let's first review the familiar decimal addition. Addition of 2 decimal 

numbers is carried out using a 3-step algorithm: 

Step 1 : Add the rightmost digits (first column), 

 

Step 2 : Note the unit digit of this sum in the same column as before, and 

if this sum exceeds 9, carry over the tens digit to the next column, 

 

Step 3 : If there are other columns, repeat the previous 2 steps, making 

sure to add the carry-over until there are no more columns, 

 

In binary, the algorithm is the same, except that the carry-over will 

occur when the sum exceeds 1 (instead of 9), as follows: 

0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 0 with a carry-over of   

1 + 1+ 1 = 1 with a carry-over of 1 

Example : let's evaluate the binary sum:111+101 

 

 

  

       1    1  

1 1 1  

+ 1 0 1  

1 1 0 0  
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a. Binary Multiplication 

In binary, multiplication can be summarized as multiplying 

numbers by digits followed by shifted additions, just like in decimal. In 

fact, in binary, it's even simpler since multiplication by 0 or 1 results in 0 

or the number itself (no multiplication tables to memorize as in decimal!). 

Let's illustrate with an example: evaluate the binary product: 

1101011 × 10110. 

 It comes down to doing this if we 

proceed with adding the terms one by 

one, without forgetting to take the carry 

(shift) into consideration: 

 

So : 1101011 × 10110 = 100100110010 

  

 

Note: For the multiplication of fractional numbers, the rule is the same 

as in decimal. 

 

Example: Let's evaluate the binary product: 11,01 × 101,1 

 

 

 

 

 

 

 

  

1 1 0 1 0 1 1  

 X        1 0 1 1 0  

0 0 0 0 0 0 0  

+            1 1 0 1 0 1 1 .   

+         1 1 0 1 0 1 1 .  .   

+      0 0 0 0 0 0 0  .  .  .   

+   1 1 0 1 0 1 1  .  .  .  .     

 1 0 0 1 0 0 1 1 0 0 1 0  

1 1 , 0 1  

 X        1 0 1 , 1  

1 1 0 1  

+         1 1 0 1 .   

+      0 0 0 0  .  .   

+   1 1 0 1  .  .  .   

1 0 0 0 1 1 , 1 1 1  
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b. Binary Subtraction 

The subtraction is performed following the principle of borrowing, 

just like in decimal. 

0 - 0 = 0 1 - 1 = 0 1 - 0 = 1 0 - 1 = 1 with a borrow of 1 in 

the next column. 

Example: Let's evaluate the following subtractions: 

 

 

 

 

 

Remark: 

1: In the case of fractions, it is necessary to vertically align the decimal 

points before starting the subtraction operation. 

2: When a difference of 0 - 1 appears in a column, we borrow from the 

first nonzero column to the left, and all the 0's just before it become 1's. 

 

  

             0 

1 1 1 0 1  

-      1 0 1 1  

1 0 0 1 0  

        1   0   1 

1 1 0 0 0  

-    1 0 0 1 1  

1 0 1  

        0   0   0        0      1        0      

1 1 0 1 , 0 0 1 1 0  

-      1 1 0 , 1 1 0 1 1  

1 1 0 , 0 1 0 1 1  
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c. Binary Division 

It involves successive multiplications and subtractions, just like in 

decimal. In the case of fractional numbers, we first move the decimal 

point, and then perform the division operation. 

Example: let's make the divisions:  

1010001 ÷ 11 and 111,00001 ÷ 1,01,  we have: 

 

 

 

 

 

 

 

Note: We have studied these operations from a purely arithmetic 

perspective, but from a 'machine structure' point of view, there can be 

some issues that may lead to incorrect results. For example, if we are 

working with 6 bits, the following addition: 111001 + 010010 provides a 

result of 7 bits: 1001011, causing the leftmost 1 to be lost! This is referred 

to as "overflow." Therefore, there should be an overflow indicator, and 

the error must be signaled. 

1 0 1 0 0 1  
1 0 0         

 1 0      

1 0 0  
1 1  

0  

1 1  

1 1 0 1 1  

1 1 1 0 0,0 0 1  
1 0 0             
 1 0 0 0          

1 1 0         
1 0      
1 0 1  

1 0 1  

1 0 1,1 0 1  


