
Common Base in Mathematics and Computer Science                                           Chapter 4: Coding of Symbols 

and Non-Integer Numbers 

1 
 

Computer Architecture (2023-2024) 

 

Dr. Guezouli L. 

Chapter 4: Coding of Symbols and Non-Integer Numbers 

 

1. Negative integers 

Negative integers can be represented and encoded in various ways 

depending on the number of bits used and the specific encoding method 

employed. The three most common encoding methods are: 

1.1. Sign-Magnitude representation 

In sign-magnitude representation, a negative integer is represented by 

setting the most significant bit (MSB) as the sign bit. If the sign bit is 1, it 

indicates a negative number, and if it is 0, it represents a positive number. The 

remaining bits represent the magnitude of the number. 

In this way, with a k-bit word, we can encode positive or negative 

integers N, such that N is within the range: 

-(2k-1 -1) ≤ N≤ +(2k-1 -1) 

The disadvantage of this method is that 0 has two distinct 

representations: 000..0 and 10..0, representing +0 and -0, Also, arithmetic 

operations become complicated due to the sign bit, which needs to be handled 

separately. 

1.2. The ones' complement and the two's complement. 

1.2.1. Ones' complement: 

In ones' complement representation, to get the negative value of a 

binary number, you flip all the bits (change 0s to 1s and 1s to 0s). This means 

that the negative representation of a number is obtained by taking the ones' 

complement of its positive representation. The ones' complement does not 

have a dedicated negative zero representation, and the range of representable 

numbers is: 

-(2k-1 -1)  ≤  N ≤  + (2k-1 -1), 

  



Common Base in Mathematics and Computer Science                                           Chapter 4: Coding of Symbols 

and Non-Integer Numbers 

2 
 

Computer Architecture (2023-2024) 

 

Dr. Guezouli L. 

1.2.2. Two’s complement: 

In two's complement representation, you flip all the bits and add 1 to 

the result to obtain the negative value. The two's complement method has a 

unique representation for zero and simplifies arithmetic operations since there 

is no negative zero. The range of representable numbers is asymmetric, with 

one more negative value than positive values:  

-2k-1   ≤  N ≤  + (2k-1 -1) 

Example: The representation of (-6) using 4 bits is as follows: 

• In sign-magnitude:     1110 

• In ones' complement: 1001 

• In two's complement: 1001 + 1 = 1010 

Question: What is the range of signed numbers that can be represented 

using 4 bits for the 3 methods? 

 

• We notice that the leftmost bit (sign bit) in all three methods is always 1 

for negative numbers and 0 for positive numbers. 

• In ones' complement and two's complement, arithmetic operations are 

advantageous because subtracting a number is equivalent to adding its 

complement. This means we can use just circuits performing the 

addition, and there is no special treatment required for the sign bit. 

• In an addition using ones' complement, if there is a carry generated by 

the sign bit, it must be added to the obtained result. However, in two's 

complement, this carry is just ignored. 

Example: subtracting 4-bit numbers:  

 

 

 

 

 
 

Note: In two's complement, an overflow only occurs if the carries 

generated just before the sign bit and by the sign bit itself are different. 

  

Decimal 

     + 7 

     - 6 

 

=    + 1 

Sign-Magnitude 

       0 1 1 1 

  +  1 1 1 0 

 

=    ? 1 0 1 

Ones' complement 

       0 1 1 1 

  +  1 0 0 1 

 

=  1 0 0 0 0 

Two’s complement 

       0 1 1 1 

  +  1 0 1 0 

 

=  1 0 0 0 1 



Common Base in Mathematics and Computer Science                                           Chapter 4: Coding of Symbols 

and Non-Integer Numbers 

3 
 

Computer Architecture (2023-2024) 

 

Dr. Guezouli L. 

Example: Two's complement addition on 3 bits: 

 

 

 

 

 

2. The Fractional Numbers 

2.1. Floating-Point Representation 

2.1.1. The Standard Classic Representation 

We know that it is necessary to store data in computers. Thus, the 

number 9,750 will be stored in the following form: 1001,11. However, this 

binary expression is not enough to fully define our data because there is no 

indication of the value of the binary weight assigned to different bits, hence 

the concept of the decimal point. 

By using this concept of the decimal point, our number can be written 

as follows: 

• N = 1001,11 x 20  

• N = 100,111 x 21  

• N = 10,0111 x 22  

• N = 1,00111 x 23  

• N = 0,100111 x 24 

This last expression has the advantage of representing the value as a 

number less than 1 multiplied by a power of 2. The exponent 4 (100 in binary) 

represents the position of the decimal point. Therefore, to fully define our 

information (9,750) in this representation system, two terms are required: the 

term 100111 called Mantissa and the term 100 called Exponent. 

So, the floating-point representation consists of representing numbers 

N in the following form:  

N = M × BE with :  

• B : Base (in our case, we are studying B=2) 

• M : Mantissa 

• E : Exponent 

Decimal 

     ( - 4 ) 

     ( - 1 ) 

 

=      - 5 

Two’s complement 

        1 0 0 

        1 1 1 

 

=  1 0 1 1 ≠ - 5 , Therefore, the result is incorrect. 



Common Base in Mathematics and Computer Science                                           Chapter 4: Coding of Symbols 

and Non-Integer Numbers 

4 
 

Computer Architecture (2023-2024) 

 

Dr. Guezouli L. 

The exponent is an integer, and the mantissa is a purely fractional 

number (having no significant digits to the left of the decimal point). The 

mantissa is normalized, meaning it has the maximum number of significant 

digits: the first bit to the right of the decimal point is always 1 (e.g., 0.101110). 

Except for the value 0 (which is generally represented by the word 00…0), 

we always have: 

 

(0.1)2  ≤  |M|  <  (1)2  either (0.5)10 ≤  |M|  <  (1)10 

 

The exponent and the mantissa must be able to represent both positive 

or negative numbers, so they could be encoded in sign-magnitude, ones' 

complement, or two's complement form. Often, the mantissa is in sign-

magnitude form, while the exponent is unsigned but biased (or shifted). 

Example : 

   

Where : 

• S : is the sign of the mantissa, 

• E : is the biased exponent 

• M : is the mantissa. 

With 4 bits, for example, we can represent 24 = 16 values of E, ranging 

from 0 to 15. We can match the first 8 values (from 0 to 7) to a negative 

exponent and the next 8 values (from 8 to 15) to a non-negative exponent. A 

zero exponent is represented by the value 8, an exponent equal to +1 by the 

value 9, and an exponent equal to -1 by the value 7. This means that the bias 

is equal to 8. The bias value is subtracted from the biased exponent (ranging 

from 0 to 15) to obtain the effective exponent (ranging from -8 to +7) 

  

 

  

S E M 



Common Base in Mathematics and Computer Science                                           Chapter 4: Coding of Symbols 

and Non-Integer Numbers 

5 
 

Computer Architecture (2023-2024) 

 

Dr. Guezouli L. 

Example: Representation of signed integers on 3 bits (exponent coded 

on 3 bits →8 possible values between 0 and 7) 

 

 

 

 

 

 

 

 

One can observe that the biased representation is identical to the two's 

complement, except for the sign bit, which is reversed. In biased 

representation, the sign bit being 1 corresponds to values greater than or equal 

to 0, and when the sign bit is 0, it corresponds to values less than 0. 

The exponent determines the range of representable numbers, and the 

size of the mantissa determines the precision of these numbers. 

2.1.2. The IEEE 754 standard in single precision  

A fractional number, according to this standard, is represented using 32 

bits divided into 3 parts 

• S is the sign of the mantissa.  S        0 IF M ≥ 0. S        1 If M < 0. 

• Eb is the biased exponent, encoded using 8 bits and calculated using the 

following formula: 

Eb = Ereal + (28-1 ‒ 1)   =   Ereal + 127 

• M is the mantissa, encoded using 23 bits. In the IEEE 754 standard, the 

decimal point is placed after the bit set to 1 with the highest weight (not 

like the classic representation). 

For example :  

 (11011,01)2 = (0,1101101 × 25)         according to the classical standard 

         = (1,101101 × 24)           according to IEEE 754 standard 

         = (1,M × 24)  

Decimal 

+ 3 

+ 2 

+ 1 

   0 

- 1 

- 2 

- 3 

- 4 

Sign-Magnitude 

0 1 1 

0 1 0 

0 0 1 

0 0 0 // 1 0 0 

1 0 1 

1 1 0 

1 1 1 

------ 

One's complement 

0 1 1 

0 1 0 

0 0 1 

0 0 0 // 1 1 1 

1 1 0 

1 0 1 

1 0 0 

------ 

Two's complement 

0 1 1 

0 1 0 

0 0 1 

0 0 0  

1 1 1 

1 1 0 

1 0 1 

1 0 0 

Biased representation 

1 1 1 

1 1 0 

1 0 1 

1 0 0  

0 1 1 

0 1 0 

0 0 1 

0 0 0 



Common Base in Mathematics and Computer Science                                           Chapter 4: Coding of Symbols 

and Non-Integer Numbers 

6 
 

Computer Architecture (2023-2024) 

 

Dr. Guezouli L. 

Where M = 101101 

Example : (100011,01)2 = (0,10001101 × 26) = (1,0001101 × 25)  

The number is positive So S = 0  

Eb = Ereal + 127 = 5 + 127 = (132)10 = (10000100)2 

M = 10001101 

The representation of the number (11011,01)2 in floating point 

according to the IEEE 754 standard in single precision is: 

0   10000100   10001101000000000000000 

2.1.3. The IEEE 754 standard in double precision: 

A fractional number, according to this standard, is represented using 64 

bits divided into 3 parts: 

• S : encoded using 1 bit. 

• Eb : encoded using 11 bits and calculated using the following formula : 

Eb = E real + (211-1 ‒ 1) = Ereal + 1023 

• M : encoded using 52 bits.  

Example : (‒100011,01)2 = (‒0,10001101 × 26) = (‒1,0001101 × 25)  

The number is negative, so S = 1  

Eb = Ereal + 1023 = 5 + 1023 = (1028)10 = (10000000100)2 

M = 10001101 

The floating-point representation of the number (‒100011,01)2 in IEEE 

754 double precision is :  

1   10000000100   1000110100000000000000000000000000000000000000000000 

  



Common Base in Mathematics and Computer Science                                           Chapter 4: Coding of Symbols 

and Non-Integer Numbers 

7 
 

Computer Architecture (2023-2024) 

 

Dr. Guezouli L. 

2.1.4. Arithmetic operations in floating-point representation 

For multiplication, you need to add the exponents, multiply the 

mantissas, and re-normalize the result if necessary. 

Example : (0.2 × 10-3) × (0.3 × 107) = ? 

• Add the exponents: -3 + 7 = 4 

• Multiply the mantissas:  0.2 × 0.3 = 0.06 

• Result before normalization: 0.06 × 104 

• Normalized result: 0.6 × 103 

For division, you need to subtract the exponents, divide the mantissas, 

and re-normalize the result if necessary 

For addition, the exponents must have the same value. Therefore, you 

may need to de-normalize the smaller value to bring its exponent to the same 

value as the larger number. After adding the mantissas, normalization may be 

required. 

Example : (0.300 × 104) + (0.998 × 106)  = ? 

• Denormalization: 0.300 ×  104 → 0.003 ×  106 

• Add the mantissas : 0.003 + 0.998 = 1.001 

• Normalization of the result: 1.001 × 106 → 0.1001 × 107 

Subtraction is performed similarly to addition, but you need to perform 

subtraction of the mantissas instead of addition.  

  



Common Base in Mathematics and Computer Science                                           Chapter 4: Coding of Symbols 

and Non-Integer Numbers 

8 
 

Computer Architecture (2023-2024) 

 

Dr. Guezouli L. 

2.2. Fixed-Point Representation 

The representation of numbers in floating-point format is not the only 

option available. There is also the representation of numbers in fixed-point 

format. The difference is that the number of digits after the decimal point (the 

rightmost position) is always the same, thus providing a fixed precision for 

the represented fractional numbers. 

Example : 

 Let's take (25,75)10 as an example, represented in binary as (11001,110)2 

0 0 1 1 0 0 1 1 1 0 

 

In this configuration, the position of the decimal point is fixed (between 

the 3rd and 4th bit). Since the decimal point is not explicitly shown or 

represented, by default, the rightmost bit represents the weight of 20, which is 

incorrect in this case. This representation assumes an implicit multiplication 

of this number by 2-3 to obtain the exact value. The term -3 represents the 

fixed position of the decimal point and must be stored in the machine to 

interpret the number correctly. 

  

  

, 



Common Base in Mathematics and Computer Science                                           Chapter 4: Coding of Symbols 

and Non-Integer Numbers 

9 
 

Computer Architecture (2023-2024) 

 

Dr. Guezouli L. 

3. The different types of data encoding 

3.1 BCD (Binary Coded Decimal) Code:  

This type of encoding seeks to combine the advantages of the decimal 

system and the binary code. It is commonly used for displaying decimal data, such 

as in calculators. Each decimal digit is represented by a binary word (usually four 

bits).  

To encode a decimal number in BCD, each digit of the decimal base 

number is separately encoded into binary.  

Example : (BCD sur 4 bits) : 1985 = 0001 1001 1000 0101(BCD) 

Note: 

• The BCD representation of a number is not equivalent to the natural 

binary representation of the decimal number. BCD coding is simple, 

but mathematical operations cannot be directly performed on it. 

• There are several types of BCD codes, but the one presented in this 

section is the most commonly known. 

3.2 EBCDIC (Extended Binary Coded Decimal Interchange) Code:  

This code is mainly used by IBM. It is represented using 8 bits and is used 

for character encoding, where each character is associated with its EBCDIC code.  

Example :  

• The code of the uppercase character ‘A’ in EBCDIC =  11000001  

• The code of the character ‘0’ in EBCDIC = 11110000 

  



Common Base in Mathematics and Computer Science                                           Chapter 4: Coding of Symbols 

and Non-Integer Numbers 

10 
 

Computer Architecture (2023-2024) 

 

Dr. Guezouli L. 

3.3 The ASCII Code: American Standard Code for Information Interchange 

This code is a widely used character encoding standard. It was developed 

in the early 1960s to standardize the representation of characters and control 

characters in computers and communication devices. 

The ASCII code offers different extensions depending on the "code page". 

For example, the Code page 850 is a "multilingual" character set, while code page 

864 defines the Arabic character set, and code page 437 defines the French 

character set, etc... 

 

La table des codes ASCII 

 

 

 

 

 

 

 

 

 

 

Note: The ASCII code table above displays printable characters and not 

control codes. Indeed, the characters with decimal codes 10, 13, and 27 

respectively represent Line Feed (LF, which moves the cursor to the next line), 

Carriage Return (CR, which moves the cursor to the beginning of the current line), 

and Escape (ESC, used for various purposes like initiating special sequences in 

terminal control) 

  



Common Base in Mathematics and Computer Science                                           Chapter 4: Coding of Symbols 

and Non-Integer Numbers 

11 
 

Computer Architecture (2023-2024) 

 

Dr. Guezouli L. 

3.4 Gray Code :  

Gray code is a type of binary encoding that ensures that only one-bit 

changes at a time when a number is incremented by one. This property is 

important for several applications. 

To construct the Gray code of a number N, you can simply calculate the 

exclusive OR (XOR) between N expressed in binary and the same binary number 

shifted one position to the right. 

The exclusive OR (⊕) is a logical operation that returns 0 if the two 

operands are the same and 1 otherwise. 

 

 

 

 

 

 

Exemples : Let’s represent 10 in Gray code. (10)10 = (1010)2.  

 

     1 0 1 0         10 in binary 

  ⊕ 0 1 0 1      10 in binary shifted by one place to the right 

     1 1 1 1 

 

Finally, we find that 10 in decimal is represented by 1111 in Gray code. 

 

  

 

A B A ⊕B 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

A and B identical 

A and B different 


