Chapter 6: Simplification of Boolean Functions

1. Simplification of Boolean Functions

The goal of simplifying logical functions is to:

- Reduce the number of terms in a function, which leads to a reduction in the number of logic gates,
- Obtain a smaller, faster, and less expensive circuit.

1.1. Algebraic Simplification

The principle is to apply the rules of Boolean algebra to eliminate variables or terms,

Rule 1: Apply the following rules:

$A.B + A.\overline{B} = A$	$(A + B) (A + \overline{B}) = A$
A + A B = A	A(A+B) = A
$A + \overline{A} B = A + B$	A ($\overline{A} + B$) = A B

Example :

1.
$$F(A,B,C) = A.\overline{B} + B.\overline{C} + B.C = A.\overline{B} + B.(\overline{C}+C) = A + B$$

2. $F(A,B,C,D) = A.B.C + A.B.\overline{C} + A.\overline{B}.C.D = A.B.(C+\overline{C}) + A.\overline{B}.C.D$
 $= A.B + A.\overline{B}.C.D$
 $= A(B + \overline{B}(C.D))$
 $= A(B + C.D)$
 $= A.B + A.C.D$

Rule 2: Adding an Existing Term:

Example :

1.
$$A B C + \overline{A} B C + A \overline{B} C + A B \overline{C} =$$

 $A B C + \overline{A} B C + A B C + A \overline{B} C + A B C + A \overline{B} \overline{C} =$
 $B C + A C + A B$

Rule 3: Simplify the canonical form with the minimum number of terms: Example : Let's simplify the following function:

1. $F(A,B,C) = \sum (2, 3, 4, 5, 6, 7) = A + B$

1.2. Karnaugh Map

Looking at the algebraic simplification method, it is noticeable that it becomes quite difficult if **the number of variables increases**. Karnaugh's method is a **rapid** simplification technique.

1.2.1. Adjacency Principle

Let's examine the following expression: : A . B + A . \overline{B}

Both terms have the same variables. The only difference is the state of variable B, which changes.

These terms are adjacent	These terms are not adjacent
$A.B + \overline{A}.B = B$	$A.B + \overline{A}.\overline{B}$
$A.B.C + A.\overline{B}.C = A.C$	$A.B.C + A.\overline{B}.\overline{C}$
$A.B.C.D + A.B.\overline{C}.D = A.B.D$	$A.B.C.D + \overline{A}.B.\overline{C}.D$

1.2.2. Method Principle

- It is a table with 2ⁿ cells, where 'n' is the number of variables.
- The method can be applied to logical functions with 2, 3, 4, 5, and 6 variables.
- Rows and columns are numbered in Gray code.
- Each minterm (TT) corresponds to a cell with a value of 1.
- Each maxterm (TT) corresponds to a cell with a value of 0.
- The O_s can be omitted to simplify the representation.

1.2.3. Simplification

- Identify adjacent cells containing a 1 and group them in sets of 2ⁿ (32, 16, 8, 4, 2, 1).
- Two cells are adjacent when they are positioned next to each other horizontally and vertically.
- Cells at the ends of the same row or column are adjacent (cylindrical form).
- The 4 corner cells are considered adjacent.
- The size of a group must be a power of 2.
- With the Karnaugh method, the goal is to minimize the number of groups (minimize the number of terms) that contain the maximum number of 1_s (minimize the number of variables).
- Eliminate variables that change states within a group.
- The final function is the sum of terms where the variable states do not change within a group.
- One or more cells can be common to several groups.
- Stop when there is no 1 outside the groups.

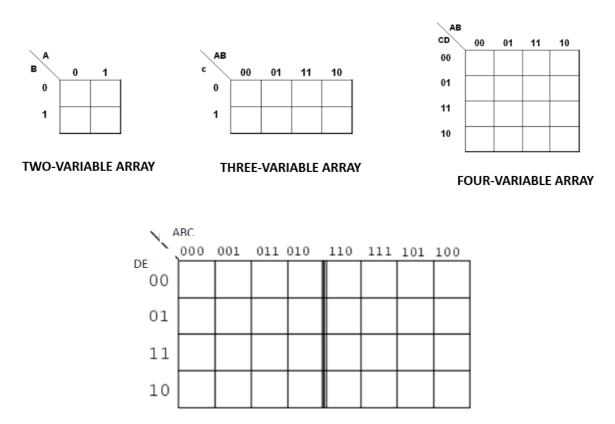
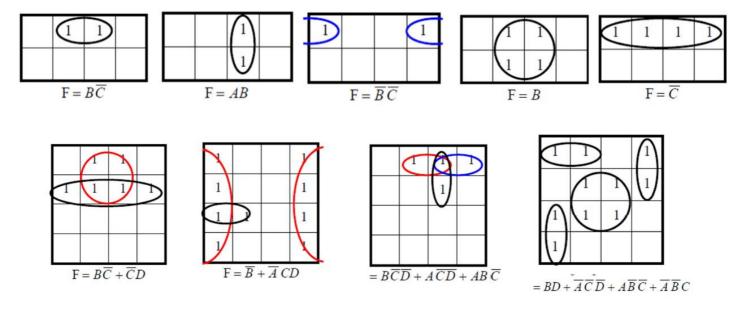
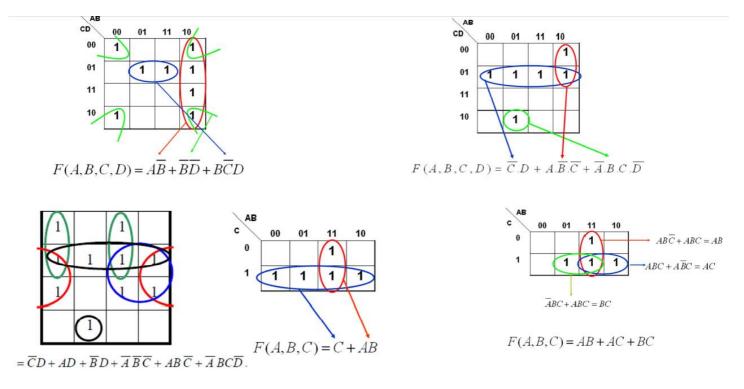


Tableau 5 variables

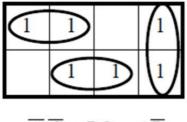
Beyond 6 variables, since the Karnaugh method is no longer applicable,

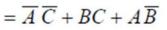
the Mc-cluskey method is used.

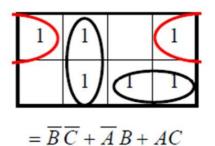




The simplification result may not be unique







We can apply the Karnaugh method on MAXTERMS

