Exercise 1:

a) In each of the following examples, given three boolean variables A, B, and C, use a truth table to demonstrate the equality between two logical expressions.

1) $\overline{A} + \overline{B} = \overline{A \cdot B}$

- 2) $A + \overline{A} \cdot B = A + B$
- 3) (A+B). $(\overline{A}\cdot\overline{B}) = 0$
- 4) $A.C + A.\overline{C} + B.C + B.\overline{C} = A+B$

b) Represent the following two boolean expressions using a truth table:

$$S_1 = A + B.C$$
 $S_2 = (A+B).(A+C)$

What do you notice ? What can we conclude?

Exercise 2:

Simplify the expressions S1, S2, S3, and S4 using the properties of Boolean algebra.

- 1) $S_1 = \overline{A} \cdot B + A \cdot \overline{B} + A \cdot B$
- 2) $S_2 = B + A.B + B.C + C$
- 3) $S_3 = (B + \overline{B}.A).C + A.B.\overline{C}$
- 4) $S_4 = (A+C) \cdot (A+\overline{B}) \cdot (A+\overline{C})$

Exercise 3 :

1) Provide the first canonical form of the following functions using the truth table:

- a. $F_1(A, B, C) = (\overline{A} + \overline{B}) \cdot (B + \overline{C})$
- b. $F_2(A, B, C, D) = A. \overline{C}. D + \overline{A}. B. \overline{D}$
- c. $F_3(A, B, C) = \sum (1, 2, 7)$
- d. F₄(A,B,C,D) =∑(0,3,6,9,10,13)
 2) Provide the second canonical form of the following functions using the truth table :
- a. $H_1(A, B, C) = \overline{A} \cdot B + \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{C}$
- b. $H_2(A, B, C, D) = A. B. C + \overline{A}. \overline{B}. C + B. \overline{D} + A. D$
- c. $H_3(A, B, C) = \prod (1, 2, 4, 5, 6)$
- d. $H_4(A, B, C, D) = \prod (4,7,12,14,15)$
 - 3) Consider the following truth tables:

А	В	С	D	F(A,B,C,D)
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

A	В	C	H (A,B,C)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

- a. Provide the first canonical form of F and the second canonical form of H.
- b. Deduce the simplification of each function from the truth table.
- c. Demonstrate the correctness of the obtained simplification using algebraic properties

Exercise 4 :

- 1. Write in the first canonical form the functions defined by the following propositions:
- F(A,B,C)=1 if and only if exactly two of the variables A, B, C are set to 1
- **F**(**A**,**B**,**C**)= 1 if and only if the variables A, B, C are all set to 1
- F(A,B,C) = A+B.C
- 2. Write in the second canonical form the functions defined by the following propositions:
- F(A,B,C)=0 if and only if exactly one of the variables A, B, C is set to 1
- **F**(**A**,**B**,**C**)= **0** if and only if at least two of the variables A, B, C are set to 0
- F(A,B,C) = C.(B+A+C)

Exercise 5 :

Using the Morgan's theorems:

- 1. Verify that the complements of functions F1 and F2 :
- $F_1 = A \cdot B + \overline{C}$
- $F_2 = (A + B \cdot C) \cdot (\bar{A} \cdot B + C)$

Are :

- $\overline{F}_1 = (\overline{A} + \overline{B}) \cdot C$
- $\bar{F}_2 = \bar{C} + \bar{A} \cdot \bar{B}$
- 2. Express the complement of the following function:
- $F_3 = \overline{A} \cdot \overline{C} \cdot \overline{D} + A \cdot D + \overline{A} \cdot B \cdot C + \overline{A} \cdot \overline{B} \cdot \overline{C}$

Exercise 6 :

Simplify the following functions algebraically:

- 1. $F_1(X, Y, Z) = X.Y.\bar{Z} + \bar{X}.Y.Z + \bar{X}.\bar{Y}.\bar{Z} + \bar{X}.\bar{Y}.Z + X.Y.Z + \bar{X}.Y.\bar{Z}$
- 2. $F_2(A, B, C) = A.\overline{B}.\overline{C} + \overline{A}.\overline{B}.C + \overline{A}.\overline{B}.\overline{C} + \overline{A}.B.\overline{C}$
- 3. $F_3(A, B, C) = \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot \overline{C} + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C + \overline{A} \cdot B \cdot C$
- 4. $F_4(A, B, C, D) = \sum (2,3,4,5,6,7,8,9,10,11,12,13,14,15)$

Exercise 7:

Simplify the following functions using the Karnaugh method, then provide the logic diagram for each simplified function:

- 1. $F_1(A,B) = A.\overline{B} + \overline{A}.\overline{B} + A.B$
- 2. $F_2(A, B, C) = \overline{A} \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{C}$
- 3. $F_3(A, B, C) = \sum (1, 2, 6)$
- 4. $F_4(A, B, C) = \sum (0, 1, 2, 3, 4, 5)$
- 5. $F_5(A, B, C) = A.\overline{B}.\overline{C} + A.\overline{B}.C + \overline{A}.\overline{B}.C + A.B.\overline{C}$
- 6. $F_6(A, B, C, D) = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + A \cdot \overline{B} \cdot \overline{C} \cdot D + \overline{A} \cdot B \cdot C \cdot D + A \cdot \overline{B} \cdot C \cdot D$
- 7. $F_7(A, B, C, D) = \sum (0, 1, 3, 5, 6, 7, 9, 13)$
- 8. $F_8(A, B, C, D) = \sum (3,4,5,7,9,13,14,15)$

Exercise 8 :

For each Karnaugh map below, provide:

- 1. The associated logical function.
- 2. The simplification of the logical function found.

Exercise 9 :

We consider a logic circuit with 3 switches as inputs: Switch1, Switch2, and Switch3, and a single bulb **B** as output.

The bulb B lights up (red or green) depending on the state of the variables S_1 , S_2 , and S_3 (where S_1 , S_2 , and S_3 represent switches: Switch1, Switch2, and Switch3, respectively)

The following situations allow the bulb **B** to light up (**B** =1: green color):

- 1. Switch 1 alone or with either of the other two switches (Switch 2, Switch 3) can turn on bulb **B**.
- 2. Both switches (Switch 2, Switch 3) together can turn on bulb **B**.

Required work:

- 1. Create the truth table.
- 2. Simplify the output equation using the Karnaugh map method.
- 3. Draw the Logic Diagram.

								F3					F4					F5		
F1	AB C	00	01	11	10	AB CD	00	01	11	10	AB CD	00	01	11	10	AB CD	00	01	11	10
	0		1		1	00	1	1		1	00	1				00	1		1	1
	1	1	1		1	00	1	T		1	00	1				00	T		1	1
	AB	00	01	11	10	01	1	1	1	1	01	1		1	1	01				
F2	c				10	11	1	1	1	1	11	1		1	1	11				
	0	1	1	1		4.0					10	1				4.0	1	1	1	1
	1		1	1	1	10	1			1	10	T			T	10	T	T	T	1

Exercise 10 :

- Four keys C₁, C₂, C₃, and C₄ control the opening of a safe.

-The combinations for opening the safe are:

- 1. Key C1 or key C2 with both keys C3 and C4.
- 2. Key C2 and keys C3 and C4.
- 3. Both keys (C3 and C4) with key C1 or key C2.

-Create the Logic Diagram for this system.

Note: The output function is **1** if the safe is open and **0** otherwise.