Tutorial Series 1

MACHINE STRUCTURE

Exercise 1:

Use truth tables to prove the following equalities:
1- De Morgan's Theorem:
a- $\overline{\mathrm{A} . \mathrm{B}}=\overline{\mathrm{A}}+\overline{\mathrm{B}}$
b- $\overline{\mathrm{A}+\mathrm{B}}=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$
2- The laws of Boolean Algebra: Distributivity:
a- $\mathrm{A}+\mathrm{B} \cdot \mathrm{C}=(\mathrm{A}+\mathrm{B}) \cdot(\mathrm{A}+\mathrm{C})$
b- $\mathrm{A} \cdot(\mathrm{B}+\mathrm{C})=\mathrm{A} \cdot \mathrm{B}+\mathrm{A} \cdot \mathrm{C}$
c- $(\mathrm{A}+\mathrm{B}) \cdot(\overline{\mathrm{A}} \cdot \overline{\mathrm{B}})=0$

Exercise 2:

Simplify the following functions using boolean algebra laws:

$$
\begin{array}{ll}
F_{1}=(a \cdot b+\bar{c})+c \cdot(\bar{a}+\bar{b}) & F_{2}=(a \cdot \bar{b}+c)+(a+\bar{b}) \cdot c \\
F_{3}=(x+y) \cdot z+\bar{x} \cdot(\bar{y}+z)+\bar{y} & F_{4}=(x+y+z) \cdot(\bar{x}+y+z)+x \cdot y+y \cdot z
\end{array}
$$

Exercise 3:

The function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})$ with three variables is defined by the following truth table:

A	B	C	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

1- Write the function F in the disjunctive form (first canonical form).
2- Write the function f in the conjunctive form (second canonical form).
3- Write these equations in decimal notation.

Exercise 4:

Convert the following functions to their corresponding canonical form:
$\mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B})=\sum(0,1) \quad \mathrm{F}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Pi(0,1,2) \quad \mathrm{F}_{3}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum(0,1,3,4,5)$

Exercise 5:

1) Give the first canonical form of the Boolean functions defined by the following proposals:
a) $\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C})=\mathbf{1}$ if and only if one of the variables A, B and C takes the value 0 .
b) $\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C})=\mathbf{0}$ if and only if at least two of the variables A, B and C take the value 1 .
c) $\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C})=\mathbf{B} \cdot \mathbf{C}+\mathbf{C}+\mathbf{A} \cdot \overline{\mathbf{B}}$
2) Give the second canonical form of the boolean functions defined by the following proposals:
a) $\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C})=\mathbf{0}$ if and only if the variables A, B, and C take the value 1 or 0 .
b) $\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C})=\mathbf{1}$ if and only if at most one of the variables A, B and C takes the value 0 .
c) $\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathrm{C})=(\mathbf{A}+\mathbf{B}) \cdot(\mathbf{B}+\overline{\mathbf{C}})$

Exercise 6:

Find the complement of the following boolean functions and provide their final simplified functions if possible:

$$
\begin{array}{ll}
\mathrm{F}_{1}=\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}}+\mathrm{A} \cdot(\overline{\mathrm{~B}}+\mathrm{C}) & \mathrm{F}_{2}=\mathrm{A} \cdot \overline{\mathrm{~B}} \cdot(\mathrm{~A}+\mathrm{C})+\overline{\mathrm{A}} \cdot \mathrm{~B} \cdot \overline{(\mathrm{~A}+\overline{\mathrm{B}}+\overline{\mathrm{C}})} \\
\mathrm{F}_{3}=(\mathrm{A}+\mathrm{B} \cdot \mathrm{C}) \cdot(\overline{\mathrm{A}} \cdot \mathrm{~B}+\mathrm{C}) & \mathrm{F}_{4}=(\mathrm{C}+\mathrm{D}) \cdot \overline{\mathrm{A} \cdot \overline{\mathrm{C}} \cdot \mathrm{D}} \cdot(\overline{\mathrm{~A}} \cdot \mathrm{C}+\overline{\mathrm{D}})
\end{array}
$$

