Exercise 1:

Provide the associated functions (First and Second Canonical Forms) for each Karnaugh map:
1)

AB	00	01	11	10
0			1	1
1		1	1	

2)

CD	00	01	11	10
00		1		1
01	1	1	1	1
11	1	1	1	1
10		1		1

Exercise 2:

Simplify with Karnaugh Map the logical functions represented by the following tables:
1)

AB	00	01	11	10
0	1			1
1	1	1		1

2)

AB CD	00	01	11	10
00			1	1
01				
11	1			1
10	1		1	1

3)

CD	00	01	11	10
00		1		1
01				
11	1	1		
10				1

4)

AB	00	01	11	10
00	1	1	1	1
01	1	1		1
11	1	1	1	1
10	1	1	1	1

5)

AB CD	00	01	11	10
00	1		1	1
01	1			1
11				
10	1		1	1

6)

AB	00	01	11	10
CD				
00	1	1	1	
01	1	1		1
11	1	1		1
10	1	1	1	

Exercise 3:

1- Provide the simplified notation (decimal form) of the following Boolean equations:
$\mathrm{F}_{1}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{X}+\overline{\mathrm{X}} . \overline{\mathrm{Z}}$
$F_{2}(A, B, C)=A \cdot B+A \cdot \bar{B} \cdot C$
2- Provide the simplified notations (two notations) of \mathbf{F} associated with the following Karnaugh map:

AB CD	00	01	11	10
00		1		
01				
11	1			1
10	1		1	1

Exercise 4: (Logic circuit synthesis)

1- Simplify $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(1,2,3,5,6,7,8,10,12,13)$
2- Draw the associated circuit.

Exercise 5: (Logic circuit synthesis)

A hot beverage vending machine offers the following possible drinks to customers:

- Short sweetened coffee
- Short unsweetened coffee
- Long-sweetened coffee
- Long unsweetened coffee
- Long sweetened coffee with milk
- Long unsweetened coffee with milk
- Sweetened milk
- Unsweetened milk

The vending machine orders are:

- short coffee = \mathbf{a}
- \quad long coffee $=\mathbf{b}$
- sugar = s
- milk $=\mathbf{m}$

Question: Provide the synthesis of the associated circuit.

Exercise 6: (Logic circuit synthesis)

Three switches, $\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{2}}$, and $\mathbf{S}_{\mathbf{3}}$, control the startup of a system with two motors, $\mathbf{M}_{\mathbf{1}}$ and $\mathbf{M}_{\mathbf{2}}$.
a- If one or more switches are activated, motor \mathbf{M}_{1} starts.
b- If at least two switches are activated, motor \mathbf{M}_{2} starts.
Question: Provide the synthesis of the associated circuit.

Exercise 7:

Let \mathbf{G} be a Boolean function such that:
$\mathrm{G}=(\mathrm{x} . \mathrm{y} . \mathrm{z})+(\mathrm{x}+\mathrm{y})$
1- Draw the circuit associated with G.
2- Use NOT, AND, and OR gates to express G, and draw the associated circuit for G.

Exercise 8: (Analysis of a logic circuit)

Consider the following flowchart:

The analysis of this circuit involves answering these questions:
1- Determine the functions of the circuit (S_{1} and S_{2}).
2- Simplify the equations S_{1} and S_{2} (using only AND, OR, and NOT).
3- Reuse AND, OR, NOT, XOR, and XNOR gates to obtain the equivalent circuit with fewer logic gates.
4- Draw the obtained circuit.

Exercise 9:

Provide the logic circuits of a half binary subtractor and a full subtractor.

Exercise 10:

Find the combinational circuit that converts binary (3 bits) to Gray code.

