<u>Tutorial Series 2</u> <u>MACHINE STRUCTURE</u>

Exercise 1:

Provide the associated functions (First and Second Canonical Forms) for each Karnaugh map:

2)

1)

C AB	00	01	11	10
0			1	1
1		1	1	

AB	00	01	11	10
CD				
00		1		1
01	1	1	1	1
11	1	1	1	1
10		1		1

Exercise 2:

Simplify with Karnaugh Map the logical functions represented by the following tables:

2)

1)

AB	00	01	11	10
C				
0	1			1
1	1	1		1

AB	00	01	11	10
CD				
00			1	1
01				
11	1			1
10	1		1	1

3)	AB	00	01	11	10	4)
	CD					
	00		1		1	
	01					
	11	1	1			
	10				1	

AB	00	01	11	10
CD				
00	1	1	1	1
01	1	1		1
11	1	1	1	1
10	1	1	1	1

5)

					6)
AB	00	01	11	10	0)
CD					
00	1		1	1	
01	1			1	
11					
10	1		1	1	

AB	00	01	11	10
CD				
00	1	1	1	
01	1	1		1
11	1	1		1
10	1	1	1	

Exercise 3:

1- Provide the simplified notation (decimal form) of the following Boolean equations:

 $F_1(X,Y,Z)=X{+}\bar{X}.\bar{Z}$

 $F_2(A,B,C) = A.B + A.\bar{B}.C$

2- Provide the simplified notations (two notations) of **F** associated with the following Karnaugh map:

AB	00	01	11	10
CD				
00		1		
01				
11	1			1
10	1		1	1

Exercise 4: (Logic circuit synthesis)

- 1- Simplify $F(A,B,C,D) = \Sigma(1,2,3,5,6,7,8,10,12,13)$
- 2- Draw the associated circuit.

Exercise 5: (Logic circuit synthesis)

A hot beverage vending machine offers the following possible drinks to customers:

- Short sweetened coffee
- Short unsweetened coffee
- Long-sweetened coffee
- Long unsweetened coffee
- Long sweetened coffee with milk
- Long unsweetened coffee with milk
- Sweetened milk
- Unsweetened milk

The vending machine orders are:

- short coffee = \mathbf{a}
- long coffee = \mathbf{b}
- sugar = \mathbf{s}
- milk = \mathbf{m}

Question: Provide the synthesis of the associated circuit.

Exercise 6: (Logic circuit synthesis)

Three switches, S_1 , S_2 , and S_3 , control the startup of a system with two motors, M_1 and M_2 .

- a- If one or more switches are activated, motor M_1 starts.
- b- If at least two switches are activated, motor M_2 starts.

Question: Provide the synthesis of the associated circuit.

Exercise 7:

Let ${\bf G}$ be a Boolean function such that:

G = (x.y.z) + (x+y)

- 1- Draw the circuit associated with G.
- 2- Use NOT, AND, and OR gates to express G, and draw the associated circuit for G.

Exercise 8: (Analysis of a logic circuit)

Consider the following flowchart:

The analysis of this circuit involves answering these questions:

- 1- Determine the functions of the circuit (S_1 and S_2).
- 2- Simplify the equations S_1 and S_2 (using only AND, OR, and NOT).
- 3- Reuse AND, OR, NOT, XOR, and XNOR gates to obtain the equivalent circuit with fewer logic gates.
- 4- Draw the obtained circuit.

Exercise 9:

Provide the logic circuits of a half binary subtractor and a full subtractor.

Exercise 10:

Find the combinational circuit that converts binary (3 bits) to Gray code.