Correction $\mathrm{n}^{\circ} 5$

Limited Development

Solution 1|

Use the Taylor's formula to give the limited development of order 4 at $x_{0}=0$ for $f(x)=\ln (1+x)$ By Taylor's formula, we have

$$
f(x)=f(0)+\frac{f^{(1)}(0)}{1!} x+\frac{f^{(2)}(0)}{2!} x^{2}+\frac{f^{(3)}(0)}{3!} x^{3}+\frac{f^{(4)}(0)}{4!} x^{4}+o\left(x^{4}\right)
$$

with,

$$
\begin{aligned}
& f(0)=0 \\
& f^{(1)}(x)=\frac{1}{1+x} \Longrightarrow f^{(1)}(0)=1 \\
& f^{(2)}(x)=\frac{-1}{(1+x)^{2}} \Longrightarrow f^{(2)}(0)=-1 \\
& f^{(3)}(x)=\frac{2}{(1+x)^{3}} \Longrightarrow f^{(3)}(0)=2 \\
& f^{(4)}(x)=\frac{-6}{(1+x)^{4}} \Longrightarrow f^{(4)}(0)=-6
\end{aligned}
$$

Therefore, $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+o\left(x^{4}\right)$

Solution 21

The limited development for :

1. $g(x)=x^{2} \ln (x)$ of order 3 at $x_{0}=1$.

We put $t=x-1$, then $t \rightarrow 0$ when $x \rightarrow 1$. Thus, $x=t+1$

$$
g(x)=x^{2} \ln (x)=(t+1)^{2} \ln (t+1)=\left(1+2 t+t^{2}\right) \ln (t+1)
$$

The limited development for $1+2 t+t^{2}$ of order 3 is $1+2 t+t^{2}$.
The limited development for $\ln (t+1)$ of order 3 is $t-\frac{t^{2}}{2}+\frac{t^{3}}{3}+o\left(t^{3}\right)$

$$
\begin{aligned}
g(x) & =\left(1+2 t+t^{2}\right)\left(t-\frac{t^{2}}{2}+\frac{t^{3}}{3}+o\left(t^{3}\right)\right) \\
& =t+\left(-\frac{1}{2}+2\right) t^{2}+\left(\frac{1}{3}-1+1\right) t^{3}+o\left(t^{3}\right) \\
& =t+\frac{3}{2} t^{2}+\frac{1}{3} t^{3}+o\left(t^{3}\right) \\
& =x-1+\frac{3}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}+o\left((x-1)^{3}\right)
\end{aligned}
$$

2. $f(x)=\ln (\cosh (x))$ of order 4 at $x_{0}=0$

Since the limited development for $\cosh (x)$ of order 4 is $1+\frac{x^{2}}{2}+\frac{x^{4}}{24}+o\left(x^{4}\right)$
Then,

$$
\begin{aligned}
f(x)=\ln (\cosh (x)) & =\ln \left(1+\frac{x^{2}}{2}+\frac{x^{4}}{24}+o\left(x^{4}\right)\right) \\
& =\ln (1+Y), \quad \text { with } Y=\frac{x^{2}}{2}+\frac{x^{4}}{24}+o\left(x^{4}\right) \\
& =Y-\frac{Y^{2}}{2}+o\left(Y^{2}\right) \\
& =\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{1}{2}\left(\frac{x^{2}}{2}+\frac{x^{4}}{24}+o\left(x^{4}\right)\right)^{2}+o\left(x^{4}\right) \\
& =\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{4}}{8}+o\left(x^{4}\right) \\
& =\frac{x^{2}}{2}-\frac{x^{4}}{12}+o\left(x^{4}\right)
\end{aligned}
$$

3. $h(x)=\frac{\ln (1+x)}{\sin (x)}$ of order 3 at $x_{0}=0$

We have $: \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+o\left(x^{4}\right)$ and $\sin (x)=x-\frac{x^{3}}{6}+\left(x^{4}\right)$

$$
\frac{\ln (1+x)}{\sin (x)}=\frac{x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+o\left(x^{4}\right)}{x-\frac{x^{3}}{6}+o\left(x^{4}\right)}=\frac{x\left(1-\frac{x}{2}+\frac{x^{2}}{3}-\frac{x^{3}}{4}+o\left(x^{3}\right)\right)}{x\left(1-\frac{x^{2}}{6}+o\left(x^{3}\right)\right)}=\frac{1-\frac{x}{2}+\frac{x^{2}}{3}-\frac{x^{3}}{4}+o\left(x^{3}\right)}{1-\frac{x^{2}}{6}+o\left(x^{3}\right)}
$$

Apply the division according to the increasing degrees,

Therefore,

$$
\frac{\ln (1+x)}{\sin (x)}=1-\frac{x}{2}+\frac{x^{2}}{2}-\frac{x^{3}}{3}+o\left(x^{3}\right)
$$

Solution 31

Compute the following limits using limited development:

1. $\lim _{x \rightarrow 0} \frac{\sinh (x)}{\sin (x)}$
we have $\sin (x)=x+o(x)$ and $\sinh (x)=x+o(x)$
Then,

$$
\frac{\sinh (x)}{\sin (x)}=\frac{x+o(x)}{x+o(x)}=\frac{x(1+o(1))}{x(1+o(1))}=\frac{1+o(1)}{1+o(1)}
$$

Hence, $\lim _{x \rightarrow 0} \frac{\sinh (x)}{\sin (x)}=\lim _{x \rightarrow 0} \frac{1+o(1)}{1+o(1)}=1$
2. $\lim _{x \rightarrow 0} \frac{\cos (x) \sqrt{1+x}-1}{x}$

We have $\cos (x)=1-\frac{x^{2}}{2}+o\left(x^{2}\right)$ and $\sqrt{1+x}=1+\frac{x}{2}-\frac{x^{2}}{8}+o\left(x^{2}\right)$
Thus,

$$
\begin{aligned}
& \cos (x) \sqrt{1+x}=\left(1-\frac{x^{2}}{2}+o\left(x^{2}\right)\right)\left(1+\frac{x}{2}-\frac{x^{2}}{8}+o\left(x^{2}\right)\right) \\
&=1+\frac{x}{2}-\frac{x^{2}}{8}-\frac{x^{2}}{2}+o\left(x^{2}\right) \\
&=1+\frac{x}{2}-\frac{5}{8} x^{2}+o\left(x^{2}\right) \\
& \lim _{x \rightarrow 0} \frac{\cos (x) \sqrt{1+x}-1}{x}=\lim _{x \rightarrow 0} \frac{1+\frac{x}{2}-\frac{5}{8} x^{2}+o\left(x^{2}\right)-1}{x} \\
&=\lim _{x \rightarrow 0} \frac{\frac{x}{2}-\frac{5}{8} x^{2}+o\left(x^{2}\right)}{x} \\
&=\lim _{x \rightarrow 0}\left(\frac{1}{2}-\frac{5}{8} x+o(x)\right) \\
&=\frac{1}{2}
\end{aligned}
$$

