Tutorial ${ }^{\circ}{ }^{\circ} 4$
 Elementary Function and Application

Exercice 1]

We consider the following function :

$$
\begin{aligned}
f:] 1,+\infty[& \longrightarrow]-1,+\infty[\\
x & \longmapsto f(x)=x \ln (x)-x
\end{aligned}
$$

1) Show that f admits an inverse function f^{-1} defined on J to be determined.
2) Find $f^{-1}(0)$ and $\left(f^{-1}\right)^{\prime}(0)$.

Exercice 2|

1) Show that, for all $x \in \mathbb{R}$,

$$
\cos (2 x)=\frac{1-\tan ^{2}(x)}{1+\tan ^{2}(x)}
$$

2)Show that

$$
\arccos \left(\frac{4}{5}\right)=2 \arctan \left(\frac{1}{3}\right)
$$

Exercice 3|

Let f be the function defined as

$$
f(x)=\arcsin \left(\frac{1-x^{2}}{1+x^{2}}\right)
$$

1) Show that f is defined and continuous on \mathbb{R}.
2) Show that f is differentiable on \mathbb{R}^{*} and find the derivative of f on \mathbb{R}^{*}.
3) Evaluate $\lim _{x \rightarrow+\infty} f(x)$.

Exercice 4\|

1) Find

$$
\cosh \left(\frac{1}{2} \ln (3)\right) \text { and } \quad \sinh \left(\frac{1}{2} \ln (3)\right)
$$

2) Using the formula : $\cosh (x+y)=\cosh (x) \cosh (y)+\sinh (x) \sinh (y)$.
1. Solve the following equation:

$$
2 \cosh (x)+\sinh (x)=\sqrt{3} \cosh (5 x)
$$

2. Simplify the expression :

$$
\cosh (2 \operatorname{arsinh}(x))
$$

Exercice 51

1. By using the definitions of hyperbolic functions in terms of exponentials, prove that:

$$
\left.\operatorname{artanh}(x)=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right), \quad x \in\right]-1,1[
$$

2. Solve the equation

$$
\operatorname{artanh}(x)=\ln (3)
$$

