University of Batna 2-Institute of Industrial Hygiene and Safety

Tutorial n°4

Elementary Function and Application

Exercice 1

We consider the following function :

$$f:]1, +\infty[\longrightarrow] - 1, +\infty[$$
$$x \longmapsto f(x) = x \ln(x) - x$$

- 1) Show that f admits an inverse function f^{-1} defined on J to be determined.
- 2) Find $f^{-1}(0)$ and $(f^{-1})'(0)$.

Exercice 2

1) Show that, for all $x \in \mathbb{R}$,

$$\cos(2x) = \frac{1 - \tan^2(x)}{1 + \tan^2(x)}.$$
$$\arccos\left(\frac{4}{5}\right) = 2\arctan\left(\frac{1}{3}\right).$$

2)Show that

Exercice 3

Let f be the function defined as

$$f(x) = \arcsin\left(\frac{1-x^2}{1+x^2}\right)$$

- 1) Show that f is defined and continuous on \mathbb{R} .
- 2) Show that f is differentiable on \mathbb{R}^* and find the derivative of f on \mathbb{R}^* .
- 3) Evaluate $\lim_{x \to +\infty} f(x)$.

Exercice 4

1) Find

$$\cosh\left(\frac{1}{2}\ln(3)\right)$$
 and $\sinh\left(\frac{1}{2}\ln(3)\right)$.

- 2) Using the formula : $\cosh(x+y) = \cosh(x)\cosh(y) + \sinh(x)\sinh(y)$.
 - 1. Solve the following equation:

$$2\cosh(x) + \sinh(x) = \sqrt{3}\cosh(5x)$$

2. Simplify the expression :

 $\cosh(2\operatorname{arsinh}(x))$.

Exercice 5

1. By using the definitions of hyperbolic functions in terms of exponentials , prove that :

$$\operatorname{artanh}(x) = \frac{1}{2} \ln\left(\frac{1+x}{1-x}\right), \qquad x \in \left[-1, 1\right]$$

2. Solve the equation

$$\operatorname{artanh}(x) = \ln(3)$$