
University of Batna 2
Faculty of Mathemathics and Informatics

CALCULS DISTRBUES

Cours Pour Master 1 ISIDS

Auteur
Hamouma Moumen

Octobte 1, 2021



Contents

1 Introduction 1

2 Signature-Free Asynchronous Binary Byzantine Consensus 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Computation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 The Binary-Value Broadcast Abstraction . . . . . . . . . . . . . . . . . . . 4

2.3.1 Binary-value broadcast . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.2 A BV-broadcast algorithm . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.3 Cost of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 The Byzantine Consensus Algorithm . . . . . . . . . . . . . . . . . . . . . 6
2.4.1 Byzantine consensus and enriched model . . . . . . . . . . . . . . . 6
2.4.2 Randomized Byzantine consensus algorithm . . . . . . . . . . . . . 7

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Randomized k-Set Agreement in Asynchronous Systems 10
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Asynchronous Model with Crashes Failures, and Definitions . . . . . . . . 10

3.2.1 Computation Model . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Reliable broadcast abstraction . . . . . . . . . . . . . . . . . . . . . 12
3.2.3 k-Set agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Crash Model: A Randomized k-Set Agreement Algorithm . . . . . . . . . . 13
3.3.1 Description of the algorithm . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Asynchronous Model with Byzantine Failures, and Definitions . . . . . . . 15
3.4.1 Computation Model . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4.2 The no-duplicity broadcast abstraction . . . . . . . . . . . . . . . . 16
3.4.3 k-Set agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Two Multivalued Validated Broadcast Abstractions . . . . . . . . . . . . . 18
3.5.1 Multivalued validated all-to-all broadcast . . . . . . . . . . . . . . . 18
3.5.2 Synchronized multivalued validated all-to-all broadcast . . . . . . . 20

3.6 Byzantine Model: a Randomized k-Set Agreement Algorithm . . . . . . . . 21
3.6.1 Description of the algorithm . . . . . . . . . . . . . . . . . . . . . . 21

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Implementing Timely Provable reliable Send Primitive 24
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 System model and synchrony assumptions . . . . . . . . . . . . . . . . . . 24
4.3 Provable reliable send Primitive . . . . . . . . . . . . . . . . . . . . . . . . 25

i



4.4 An Algorithm Implementing Provable Reliable Send in [n > 3t, RSA, 〈t +
1〉-source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Asynchronous Multi-valued Byzantine Consensus with Little Synchrony 27
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Computation Model and the Consensus Problem . . . . . . . . . . . . . . . 27

5.2.1 Computation Model . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.2 Byzantine behavior and authentication . . . . . . . . . . . . . . . . 29
5.2.3 The Consensus Problem . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 An Authenticated Byzantine Protocol With �2t-bisource . . . . . . . . . . 31
5.4 An Authenticated Byzantine Consensus Protocol with a ♦2t-SD . . . . . . 33
5.5 A Byzantine Consensus Protocol In Signature-Free Systems with a ♦3t-SD 35

5.5.1 A Simple Reliable-Broadcast Algorithm . . . . . . . . . . . . . . . . 35
5.5.2 An extension of Reliable-Broadcast to get a weaker delivery . . . . 36
5.5.3 Description of the proposed protocol . . . . . . . . . . . . . . . . . 37

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Time-Free Authenticated Byzantine Consensus 41
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Basic Computation Model and Consensus Problem . . . . . . . . . . . . . 41

6.2.1 Asynchronous Distributed System with Byzantine Process . . . . . 41
6.2.2 A Time-Free Assumption . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2.3 The Consensus Problem . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3 An Authenticated Byzantine Consensus Protocol With �2t-winning . . . . 43
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

ii



Chapter 1

Introduction

Distributed computing occurs when one has to solve a problem in terms of physically
distinct entities (usually called nodes, processors, processes, agents, sensors, etc.) such
that each entity has only a partial knowledge of the many parameters involved in the
problem. In the following, we use the term process to denote any computing entity. From
an operational point of view this means that the processes of a distributed system need
to exchange information, and agree in some way or another, in order to cooperate to
a common goal. If processes do not cooperate, the system is no longer a distributed
system. Hence, a distributed system has to provide the processes with communication
and agreement abstractions.

Understanding and designing distributed applications is not an easy task . This is because,
due to the very nature of distributed computing, no process can capture instantaneously
the global state of the application it is part of. This comes from the fact that, as processes
are geographically localized at distinct places, distributed applications have to cope with
the uncertainty created by asynchrony and failures. As a simple example, it is impossible
to distinguish a crashed process from a very slow process in an asynchronous system prone
to process crashes.

As in sequential computing, a simple approach to facilitate the design of distributed
applications consists in designing appropriate abstractions. More generally, computer
science is a science of abstraction and distributed computing is the science of distributed
abstractions . With such abstractions, the application designer can think about solutions
to solve problems at a higher conceptual level than the basic send/receive communication
level.

Broadcast abstractions are among the most important abstractions encountered in fault-
tolerant distributed computing. Roughly speaking, these abstractions allow processes to
disseminate information in such a way that specific provable properties concerning this
dissemination are satisfied. One of the most popular of these abstractions is reliable
broadcast.

As far as agreement abstractions are concerned, non-blocking atomic commit and consen-
sus are certainly the most important abstractions of fault-tolerant distributed computing.
Assuming that each process proposes a value, the consensus abstraction allows the non-
faulty processes to agree on the same value, which has to satisfy some validity condition
depending on both the proposed values and the failure model .
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This documents presents several protocols that solving Byzantine Consensus with different
types of assumptions.
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Chapter 2

Signature-Free Asynchronous Binary
Byzantine Consensus

2.1 Introduction
This chapter presents a round-based asynchronous consensus algorithm that copes with
up to t < n/3 Byzantine processes, where n is the total number of processes. In addition
of being signature-free and optimal with respect to the value of t, this algorithm has
several noteworthy properties: the expected number of rounds to decide is four, each
round is composed of two or three communication steps and involves O(n2) messages,
and a message is composed of a round number plus a single bit. To attain this goal, the
consensus algorithm relies on a common coin as defined by Rabin, and a new extremely
simple and powerful broadcast abstraction suited to binary values. The main target when
designing this algorithm was to obtain a cheap and simple algorithm.

2.2 Computation Model
Asynchronous processes The system is made up of a finite set Π of n > 1 asyn-
chronous sequential processes, namely Π = {p1, . . . , pn}. “Asynchronous” means that
each process proceeds at its own pace, which may vary arbitrarily with time, and remains
always unknown to the other processes.

Communication network The processes communicate by exchanging messages through
an asynchronous reliable point-to-point network. “Asynchronous” means that a message
that has been sent is eventually received by its destination process, i.e., there is no bound
on message transfer delays. “Reliable” means that the network does not loss, duplicate,
modify, or create messages. “Point-to-point” means that there is a bi-directional com-
munication channel between each pair of processes. Hence, when a process receives a
message, it can identify its sender.

A process pi sends a message to a process pj by invoking the primitive “send tag(m) to pj”,
where tag is the type of the message and m its content. To simplify the presentation, it
is assumed that a process can send messages to itself. A process receives a message by
executing the primitive “receive()”.
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The operation broadcast tag(m) is a macro-operation which stands for “for each j ∈
{1, . . . , n} send tag(m) to pj end for”.This operation is usually called unreliable broadcast
(if the sender crashes in the middle of the for loop, it is possible that only an arbitrary
subset correct processes receives the message).

Failure model Up to t processes may exhibit a Byzantine behavior. A Byzantine pro-
cess is a process that behaves arbitrarily: it may crash, fail to send or receive messages,
send arbitrary messages, start in an arbitrary state, perform arbitrary state transitions,
etc. Hence, a Byzantine process, which is assumed to send a message m to all the pro-
cesses, can send a message m1 to some processes, a different message m2 to another subset
of processes, and no message at all to the other processes. Moreover, Byzantine processes
can collude to “pollute” the computation. A process that exhibits a Byzantine behavior
is called faulty. Otherwise, it is correct.

Let us notice that, as each pair of processes is connected by a channel, no Byzantine
process can impersonate another process. Byzantine processes can modify the message
delivery schedule, but cannot affect network reliability.

Notation This computation model is denoted BZ_ASn,t[∅]. In the following, this
model is both restricted with a constraint on t and enriched with an object providing pro-
cesses with additional computational power. More precisely, BZ_ASn,t[n > 3t] denotes
the model BZ_ASn,t[∅] where the number of faulty processes is smaller than n/3, and
BZ_ASn,t[n > 3t,CC] denotes the model BZ_ASn,t[n > 3t] enriched with the common
coin (CC) abstraction as defined by Rabin.

2.3 The Binary-Value Broadcast Abstraction

2.3.1 Binary-value broadcast

Definition This communication abstraction (in short, BV-broadcast) in an all-to-all
abstraction that provides the processes with a single operation denoted BV_broadcast().
When a process invokes BV_broadcast tag(m), we say that it “BV-broadcasts the message
tag(m)”. The content of a message m is 0 or 1 (hence the term “binary-value” in the
name of this communication abstraction).

In a BV-broadcast instance, each correct process pi BV-broadcasts a binary value and ob-
tains binary values. To store the values obtained by each process, BV-broadcast provides
each correct process pi with a read-only local variable denoted bin_valuesi. This variable
is a set, initialized to ∅, which increases when new values are received. VB-broadcast is
defined by the four following properties.

• BV-Obligation. If at least (t+ 1) correct processes BV-broadcast the same value v,
v is eventually added to the set bin_valuesi of each correct process pi.

• BV-Justification. If pi is correct and v ∈ bin_valuesi, v has been BV-broadcast by
a correct process.

• BV-Uniformity. If a value v is added to the set bin_valuesi of a correct process pi,
eventually v ∈ bin_valuesj at every correct process pj.

• BV-Termination. Eventually the set bin_valuesi of each correct process pi is not
empty.
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The following property is an immediate consequence of the previous properties.

Property 1. Eventually the sets bin_valuesi of the correct processes pi become non-empty
and equal, contain all the values broadcast by correct processes and no value broadcast
only by Byzantine processes.

2.3.2 A BV-broadcast algorithm

A simple algorithm implementing the BV-broadcast abstraction is described in Figure 2.1.
This algorithm is based on a particularly simple “echo” mechanism. Differently from
previous echo-based algorithms , echo is used here with respect to each value that has
been received (whatever the number of processes that broadcast it), and not with respect
to each pair composed of a value plus the identity of the process that broadcast this
value. In the algorithm of Figure 2.1, a value entails a single echo, whatever the number
of processes that have broadcast this value.

When a process invokes BV_broadcast msg(v), v ∈ {0, 1}, it broadcasts b_val(v) to all
the processes (line 01). Then, when a process pi receives (from any process) a message
b_val(v), (if not yet done) it forwards this message to all the processes (line 03) if it has
received the same message from at least (t + 1) different processes (line 02). Moreover,
if pi has received v from at least (2t + 1) different processes, the value v is added to
bin_valuesi.

operation BV_broadcast msg(vi) is
(01) broadcast b_val(vi).

when b_val(v) is received
(02) if

(
b_val(v) received from (t + 1) different processes and b_val(v) not yet broadcast

)
(03) then broadcast b_val(v) % a process echoes a value only once %
(04) end if;
(05) if

(
b_val(v) received from (2t + 1) different processes

)
(06) then bin_valuesi ← bin_valuesi ∪ {v} % local delivery of a value %
(07) end if.

Figure 2.1: An algorithm implementing BV-broadcast in BZ_ASn,t[n > 3t]

Remark It is important to notice that no correct process pi can know when its set
bin_valuesi has obtained its final value. (Otherwise, consensus will be directly ob-
tained by directing each process pi to deterministically extract the same value from
bin_valuesi). This impossibility is due to the net effect of asynchrony and process fail-
ures (FLP 85).

2.3.3 Cost of the algorithm

As far as the cost of the algorithm is concerned, we have the following for each BV-
broadcast instance.

• If all correct processes BV-broadcast the same value, the algorithm requires a single
communication step. Otherwise, it can require two communication steps.

• Let c ≥ n− t be the number of correct processes.
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The correct processes send c n messages if they BV-broadcast the same value, and
send 2 c n messages otherwise.

• In addition to the control tag b_val, a message carries a single bit. Hence, message
size is constant.

2.4 The Byzantine Consensus Algorithm

2.4.1 Byzantine consensus and enriched model

Binary Byzantine consensus The Byzantine consensus problem has been informally
stated in the Introduction. Assuming that each correct process pi proposes a value
vi ∈ {0, 1}, each of them has to decide a value such that the following property are
satisfied.

• BC-Validity. A decided value was proposed by a correct process.
• BC-Agreement. No two correct processes decide different values.
• BC-One-shot. A correct process decides at most once.
• BC-Termination. Each correct process decides.

The BC-Validity property states that no value proposed only by faulty processes can be
decided. As we consider binary consensus, it is equivalent to the following property: if
all correct processes propose the same value v, the value v cannot be decided (where v is
the other binary value).

Enriching the basic asynchronous model: Rabin’s common coin As indicated
in the Introduction, the basic system model BZ_ASn,t[t < n/3] has to be enriched so
that Byzantine consensus can be solved. The additional computational power we consider
here is a common coin (CC) as defined by Rabin. As already indicated, the corresponding
enriched system model is denoted BZ_ASn,t[t < n/3,CC]. A common coin can be seen
as a global entity that delivers the very same sequence of random bits b1, b2, . . . , br, . . . to
processes, each bit br has the value 0 or 1 with probability 1/2.

More precisely, this oracle provides the processes with a primitive denoted random() that
returns a bit each time it is called by a process. In addition to being random, this bit
has the following global property: the rth invocation of random() by a correct process
pi returns it the bit br. This means that the rthinvocations of random() by any pair of
correct processes pi and pj return them br. A common coin is built in such a way that
the processes need to cooperate to compute the value of each bit br. This is required
to prevent Byzantine processes from computing bit values in advance and exploit these
values to produce message delivery schedule that would prevent termination.

On randomized consensus When using additional computing power provided by com-
mon coins, the consensus termination property can no longer be deterministic. Random-
ized consensus is defined by BC-Validity (Obligation), BC-Agreement, plus the following
BC-Termination property : Every non-faulty process decides with probability 1. For
round-based algorithms, this termination property is re-stated as follows: For any correct
process pi: limr→+∞

(
Probability [pi decides by round r]

)
= 1.
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2.4.2 Randomized Byzantine consensus algorithm

Principles and description of the algorithm The consensus algorithm is described
in Figure 2.2. It requires t < n/3 and is consequently optimal with respect to the maximal
number t of Byzantine processes that can be tolerated. A process pi invokes propose(vi)
where vi ∈ {0, 1} is the value it proposes. It decides when it executes the statement
decide(v) at line 08.

The local variable esti of a process pi keeps its current estimate of the decision (ini-
tially esti = vi). The processes proceed by consecutive asynchronous rounds and a BV-
broadcast instance is associated with each round. The local variable ri denotes the current
round of process pi, while the local variable bin_valuesi[ri] denotes the local read-only
variable bin_valuesi associated with the BV-broadcast instance used at round ri.

operation propose(vi)
esti ← vi; ri ← 0;
repeat forever
(01) ri ← ri + 1;
(02) BV_broadcast est[ri](esti);
(03) wait until (bin_valuesi[ri] 6= ∅);

% bin_valuesi[ri] has not necessarily obtained its final value when the wait statement terminates %
(04) broadcast aux[ri](w) where w ∈ bin_valuesi[ri];
(05) wait until

(
∃ a set of (n− t) aux[ri](x) messages delivered from distinct processes such that
valuesi ⊆ bin_valuesi[ri] where valuesi is the set of values x carried by
these (n− t) messages

)
:

(06) s← random();
(07) if (valuesi = {v}) % i.e.,|valuesi| = 1 %
(08) then if (v = s) then decide(v) if not yet done end if;
(09) esti ← v
(10) else esti ← s
(11) end if
end repeat.

Figure 2.2: A BV-broadcast-based algorithm implementing binary consensus in
BZ_ASn,t[n > 3t,CC]

—————————————————

The behavior of a correct process pi during a round ri can be decomposed in three
phases.

• Phase 1: lines 01-03. This first phase is an exchange phase. During a round ri,
a process pi first invokes BV_broadcast est[ri](esti) (line 02) to inform the other
processes of the value of its current estimate esti. This message is tagged est and
associated with the round number ri (hence the notation est[ri]()). Then, pi waits
until its underlying read-only BV-broadcast variable bin_valuesi[ri] is no longer
empty (line 03). Due to the BV-Termination property, this eventually happens.
When the predicate becomes satisfied, bin_valuesi[ri] has not yet necessarily its
final value, but it contains at least one value ∈ {0, 1}. Moreover, due to the BV-
Justification property, the values in bin_valuesi[ri] were BV-broadcast by correct
processes.

• Phase 2: lines 04-05. The second phase is also an exchange phase during which each
correct process pi invokes broadcast aux[ri](w) where w is a value that belongs to
bin_valuesi[ri] (line 04). Let us notice that all the correct processes pj broadcast a
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value of their set bin_valuesj[rj] (i.e., an estimate value of a correct process), while
a Byzantine process can broadcast an arbitrary binary value. To summarize, the
broadcasts of the second phase inform the other processes of estimate values that
have been BV-broadcast by correct processes.

A process pi then waits until the predicate of line 05 becomes satisfied. This predi-
cate is used to discard values sent only by Byzantine processes. From an operational
point of view, it states that there is a set valuesi containing only the values broad-
cast at line 04 by (n− t) distinct processes, and these values originated from correct
processes (which BV-broadcast them at line 02). Said in another way, the set valuesi
of a correct process pi cannot contain an estimate value broadcast only by Byzantine
processes. Hence, after line 05, we have valuesi ∈ {0, 1}, and for any v ∈ valuesi, v
is an estimate VB-broadcast by a correct process.

• Phase 3: lines 06-11. This last phase is a local computation phase. A correct process
pi first obtains the common coin value s associated with the current round (line 06).
– If |valuesi| = 2, both the value 0 and the value 1 are estimate values of correct

processes. In this cases, pi adopts the value s of the common coin (line 10).
– If |valuesi| = 1, pi decides v (the single value present in valuesi) if additionally
s = v (line 08). Otherwise it adopts v as its new estimate (line 09).

The statement decide() used at line08 allows the invoking process pi to decide but
does not stop its execution. A process executes round forever. This facilitates the
description and the understanding of the algorithm.

Cost of the algorithm As far as the cost of the algorithm is concerned, we have the
following, where c ≥ n− t denotes the number of correct processes.

• If the correct processes propose the same value, each round requires two communi-
cation steps (one in the BV-broadcast and one broadcast), and the expected number
of rounds to decide is two. Moreover, the total number of messages sent by correct
processes is then 2 c n.

• If the correct processes propose different values, each round requires three com-
munication steps (two in the BV-broadcast and one broadcast), and the expected
number of rounds to decide is four. Moreover, the total number of messages sent by
the correct processes is then 4 c n per round.

• In addition to a round number, both a message est[r]() and a message aux[r]()
sent by a correct process carry a single bit. An underlying message b_val() has to
carry a round number and a bit.

• The total number of bits exchanged by the correct processes is O(n2r log r) where
r is the number of rounds executed by the correct processes. Hence, the expected
bit complexity is O(n2).

2.5 Conclusion
This chapter has presented a consensus algorithm suited to asynchronous systems com-
posed of n processes, and where up to t < n/3 processes may have a Byzantine behavior.
This algorithm relies on Rabin’s common coin and an underlying binary-value broadcast
algorithm which guarantees that a value broadcast only by Byzantine processes is never
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delivered to the correct processes. In addition to being t-resilient optimal, the algorithm,
which is round-based and signature-free, uses two or three communication steps per round
(this depends on the estimate values of the correct processes at the beginning of a round),
and O(n2) messages per rounds. Moreover, each message carries a round number and a
single bit, and the expected number of rounds to decide is four. .
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Chapter 3

Randomized k-Set Agreement in
Asynchronous Systems

3.1 Introduction
k-Set agreement is a central problem of fault-tolerant distributed computing. Considering
a set of n processes, where up to t may commit failures, let us assume that each process
proposes a value. The problem consists in defining an algorithm such that each non-faulty
process decides a value, at most k different values are decided, and the decided values
satisfy some context-depending validity condition. Algorithms solving k-set agreement
in synchronous message-passing systems have been proposed for different failure models
(mainly process crashes, and process Byzantine failures). Differently, k-set agreement
cannot be solved in failure-prone asynchronous message-passing systems when t ≥ k. To
circumvent this impossibility an asynchronous system must be enriched with additional
computational power.

Assuming t ≥ k, this Chapter presents two distributed algorithms that solve k-set agree-
ment in asynchronous message-passing systems where up to t processes may commit crash
failures (first algorithm) or more severe Byzantine failures (second algorithm). To circum-
vent k-set agreement impossibility, this chapter considers that the underlying system is
enriched with the computability power provided by randomization. Interestingly, the al-
gorithm that copes with Byzantine failures is signature-free, and ensures that no value
proposed only by Byzantine processes can be decided by a non-faulty process. Both
algorithms share basic design principles.

3.2 Asynchronous Model with Crashes Failures, and
Definitions

3.2.1 Computation Model

Asynchronous processes The system is made up of a finite set Π of n > 1 asyn-
chronous sequential processes, namely Π = {p1, . . . , pn}. “Asynchronous” means that
each process proceeds at its own pace, which may vary arbitrarily with time, and remains
always unknown to the other processes.
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Communication network The processes communicate by exchanging messages through
an asynchronous reliable point-to-point network. “Asynchronous” means that a message
is eventually received by its destination process, i.e., there is no bound on message trans-
fer delays. “Reliable” means that the network does not loss, duplicate, modify, or create
messages. “Point-to-point” means that there is a bi-directional communication channel
between each pair of processes. Hence, when a process receives a message, it can identify
its sender.

A process pi sends a message to a process pj by invoking the primitive operation send
tag(m) to pj, where tag is the type of the message and m its content. To simplify the
presentation, it is assumed that a process can send messages to itself. A process receives
a message by executing the primitive “receive()”.

The operation broadcast tag(m) is a macro-operation which stands for “for each j ∈
{1, . . . , n} send tag(m) to pj end for”. This operation is usually called unreliable broad-
cast (if the sender crashes in the middle of the for loop, it is possible that only an arbitrary
subset correct processes receives a message).

Failure model Up to t processes may crash during an execution. As already indicated
in the Introduction, before a process (possibly) crashes, it executes its code as defined by
its local algorithm, and no crashed process recover. A crash is consequently a definitive
halting.

Given an execution, a process that crashes is said to be faulty in this execution, otherwise
it is correct or non-faulty. Hence, before a process crashes, no one knows if it correct or
faulty.

Random multi-sided local coin Each process pi is endowed with an operation de-
noted random(). Each invocation of this operation takes a non-empty set X as input
parameter and returns a value of X with probability 1/|X|. As we will see in Section 3.3,
equipping each process with such a local random coin provides an additional computa-
tional power that allows k-set agreement to be solved.

Notation This computation model is denoted [∅] (CAMP stands for “Crash-prone Asyn-
chronous Message Passing”). In the following, this model is both restricted with a con-
straint on t and enriched with random multi-sided local coins, which provide the processes
with additional computational power. More precisely, [t < n/α] (where α is a positive
integer) denotes the model [∅] where the maximal number of faulty processes is smaller
than n/α. [t < n/α,LRC] denotes the model [t < n/α] where each process is enriched
with a local multi-sided random coin. Let us notice that, as LRC belongs to the model,
it is given for free in [t < n/α,LRC].

Time complexity When computing the time complexity we ignore local computation
time, and consider the longest sequence of causally relate messages m1, m2, . . ., mz (i.e.,
for any x ∈ [2..z], the reception of mx−1 is a requirement for the sending of mx). The size
of such a longest sequence defines the time complexity.
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3.2.2 Reliable broadcast abstraction

This communication abstraction (in short R-Broadcast) provides the processes with two
operations, denoted R_broadcast() and R_deliver(). When a process invokes R_broadcast
tag(m), we say that it “r-broadcasts” the message whose type is tag and value is m.
Similarly, when a process returns from the invocation of R_deliver() we say that it “r-
delivers” a message. Reliable broadcast is defined by the following properties.

• R-Validity. It a process r-delivers tag(m) from a process pj, pj invoked R_broadcast
tag(m).

• R-Integrity. A process r-delivers at most once a message tag(m) from a sender pi.
• R-Termination. If a correct process r-broadcasts a message tag(m), or a correct

process r-delivers the message tag(m), then all correct processes r-deliver the mes-
sage tag(m).

Validity relies the outputs to the inputs (no spurious messages). Assuming no process
r-broadcasts several times the same message (which can be easily implemented by asso-
ciating a new sequence number with each message r-broadcast by a process), Integrity
states there is no duplication. Finally, Termination states the conditions under which a
message must be r-delivered by all correct processes, namely, either when its sender is
correct, or when at least one correct process r-delivered it.

It is easy to see that, all correct processes r-deliver the same set of messages M , and
this set contains all the messages they r-broadcast. Moreover, a faulty process r-delivers
subset of M , but two faulty processes can r-deliver two sets of messagesM1 andM2 such
that none of M1 and M2 contains the other set.

Implementations of R-Broadcast can be easily designed in [∅]. A very simple (but ineffi-
cient) one is the following. When, at the implementation level, a process receives for the
first time a copy of the message tag(m), it first forwards it to all the other processes,
and only then r-delivers it. According to the underlying topology and the way message
identifiers are built, more efficient implementations can be designed .

3.2.3 k-Set agreement

The k-agreement problem was introduced in the context of the model [∅]. It consists
in implementing an operation denoted proposek() satisfying the properties stated below.
This operation takes an input parameter, and returns a value. When a process invokes
proposek(v), we say that it “proposes value v”. When a process returns from proposek()
with the value w, we say that it “decides w”. It is assumed that at least the correct pro-
cesses invoke proposek(). The properties defining k-set agreement are the following.

• C-KS-Validity. It a process decides v, there is a process that proposed v.
• C-KS-Agreement. At most k different values are decided.
• C-KS-Termination. Any correct process decides a value.

As before, Validity relies the outputs to the inputs. Agreement defines a coordination
constraint on the processes. Termination states that at least the processes that do not
crash decide.
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3.3 Crash Model: A Randomized k-Set Agreement Al-
gorithm

This section presents an algorithm which solves the k-set agreement problem in [t <
n/2,LRC]. This algorithm is a round-based algorithm, which means that the processes
execute a sequence of asynchronous rounds1.

As we are interested in a randomized algorithm to solve k-set agreement, the Termination
property is weakened as follows : any correct process decides with probability 1. In the
context of round-based algorithms, this property can be re-stated as follows, where pi is
any correct process:

C-KS-P-Termination: limr→+∞
(
Probability [pi decides by round r]

)
= 1.

3.3.1 Description of the algorithm

Each process pi starts the algorithm by invoking proposek(vi), where vi is the value it
proposes. It decides a value when it executes the statement return(v); v is then the value
it decides. Moreover, when it executes return(), a process terminates its participation to
the algorithm. ⊥ denotes a default value that no process can propose. It is used during
each round to restrict the set of proposed values to a set of at most k values.

The algorithm is described in Figure 3.1. Each process manages a local variable esti,
which represents the current estimate of its decision value. Initially, esti is set to vi (the
value proposed by pi). Process pi manages also a local array vali[1..n], initialized to
[⊥, ...,⊥].

Dissemination of the proposed values When, it starts, a process pi first r-broadcasts
the value it proposes (line 01). When, it r-delivers the value proposed by pj, pi saves it
in vali[j] (line 16). Let us notice that, due to the Validity and Termination properties of
R-broadcast, the arrays val[1..n] of the correct processes eventually (a) contain at least
the values proposed by each correct process, and (b) become equal.

A sequence of asynchronous rounds The processes execute a sequence of asyn-
chronous rounds to converge to a set of at most k values. Each round is made up of
two communication phases (hence it costs two communication steps). The aim of the
first phase (lines 03-06) is to force each process to adopt either a value from a set of at
most k different values, or the default value ⊥.The aim of the second phase (lines 07-13)
is to allow processes to decide non-⊥ values that have been previously adopted, while
ensuring that (if processes decide during distinct rounds) no more than k different values
will eventually be decided (i.e., the Agreement property is not violated).

Let us notice that, differently from the R-broadcast used at lines 01 and 11, the broad-
cast operation used at lines 03 and 07 is the unreliable macro-operation defined in Sec-
tion 3.2.1.

1Differently from round-based synchronous algorithms where the progress from a round to the next
one is a built-in property provided by the model, in an asynchronous system it is to the processes to
implement the progress of a round to the next one.

13



operation proposek(vi) is
(01) vali ← [⊥, . . . ,⊥]; ri ← 0; esti ← vi; R_broadcast val(vi);
(02) while true do ri ← ri + 1; % round ri = r %
// ————- phase 1 of round ri: From up to n values to up to k values plus possibly ⊥ ———-
(03) broadcast phase1(ri, esti);
(04) wait (phase1(ri,−) received from R = kb n

k+1c+ 1 processes);
(05) if (∃v | W = b n

k+1c+ 1 phase1(ri, v) messages have been received)
(06) then ph2_esti ← v else ph2_esti ← ⊥ end if;
// ————- phase 2 of round ri: Try to decide on one of at most k values —————————
(07) broadcast phase2(ri, ph2_esti);
(08) wait (phase2(ri, ph2_est) received from maj = bn2 c+ 1 processes);
(09) let ph2_reci= { ph2_est such that phase2(ri, ph2_est) has been received };
(10) case ph2_reci = {⊥} then esti ← vali[random([1..n])]
(11) ⊥ 6∈ ph2_reci then let v be any value ∈ ph2_reci; R_broadcast dec(ri, v)
(12) ph2_reci = {⊥, v, . . .} then esti ← any non-⊥ value ∈ ph2_reci
(13) end case
(14) end while.

(15) when val(v) is r-delivered from pj do vali[j]← v.

(16) when dec(r, v) is r-delivered from pj do return(v).

Figure 3.1: Solving k-set agreement in [t < n/2,LRC]

First phase of a round r The processes first exchange their current estimate values
(lines 03-04). Let us note that, as far the round r is concerned, a message phase1(r, v)
can be interpreted as a vote for the value v. Accordingly, a process pi adopts a value if
has received enough votes for it, say W votes. If, among the values it has received, none
has enough votes to be adopted, pi adopts the default value ⊥. The adopted value is kept
in ph2_esti (line 06).

The aim is to have at most k different values adopted by the processes at the end of the
first phase. In order to attain this goal, we must have (k + 1)W > n (as there are only
n processes, k + 1 values cannot each obtain W votes). This means that W = dn+1

k+1
e

=b n
k+1
c+ 1.

Let us now examine how many messages phase1(r, v) a process has to wait for (at line
04) before adopting a value (line 06) in order to have a chance to adopt a value initially
proposed by a process (i.e., a value different from ⊥). Let R be this number. Considering
the case where pi adopts a non-⊥ value, let us examine the worst situation: pi can receive
(W −1) votes for (k−1) different values, and only then receive W votes for the value v it
adopts. Hence, R = (W−1)(k−1)+W = (W−1)k+1. Moreover, in order that no process
blocks at line 04, we must have R ≤ n− t which is equivalent to t < n− kb n

k+1
c.

Hence, at the end of the first phase, the set of the local variables ph2_esti contains at
most k values, plus possibly ⊥. The aim of the second phase is to allow each process
to decide one of these non-⊥ values in such a way that the Agreement property be not
violated even if processes decide during different rounds.

Second phase of a round r During the second phase, the processes exchange the
values they have previously adopted. A process pi waits for messages phase2() from a
majority of processes (lines 07-08). As shown at line 09, ph2_reci is the set of values

14



received by pi. Let us notice that if v ( 6= ⊥) belongs to ph2_reci, then v was the estimate
of at most W processes at the beginning of the current round. There are three cases
determined by the content of ph2_reci.

• If ⊥ 6∈ ph2_reci, pi can decide any value v of this set (line 11). It then r-broadcasts
the message dec(v). If pi does not crash, this message will be r-delivered at all
the non-crashed processes, which (if they do not have yet decided) will decide v at
line 15.

• If ph2_reci contains both ⊥ and non-⊥ values, pi updates its estimate esti to any
non-⊥ value of ph2_reci, and proceeds to the next round.

• If ph2_reci contains only the default value ⊥, pi updates its current estimates esti
to a randomly chosen value (line 10), and then proceeds to the next round. Actually,
pi selects randomly a process identity (say x) and sets esti to vali[x]. Let us note
that vali[x] is equal to the value proposed by px or ⊥. The randomness of the choices
guarantees that eventually there are rounds during which pi selects non-⊥ entries
of its array vali[1..n].

It is important to observe that, as soon as a process returned from the R-broadcast of
line 11, all correct processes will eventually return a value. Said, differently, no deadlock
is possible as soon as a process has executed line 11.

3.4 Asynchronous Model with Byzantine Failures, and
Definitions

3.4.1 Computation Model

From to Byzantine failures The computation model is the asynchronous message
passing model presented in Section 3.2 enriched with local random coins (LRC). It differs
only in the nature of process failures.

Failure model Up to t processes may exhibit a Byzantine behavior . A process that
exhibits a Byzantine behavior is called faulty. Otherwise, it is correct or non-faulty. A
Byzantine process is a process that behaves arbitrarily: it may crash, fail to send or
receive messages, send arbitrary messages, start in an arbitrary state, perform arbitrary
state transitions, etc. As a simple example, a Byzantine process, which is assumed to
send a message m to all the processes, can send a message m1 to some processes, a
different message m2 to another subset of processes, and no message at all to the other
processes. More generally, a Byzantine process has an unlimited computational power,
and Byzantine processes can collude to “pollute” the computation. Let us notice that, as
each pair of processes is connected by a channel, no Byzantine process can impersonate
another process, but Byzantine processes are not prevented from influencing the delivery
order of messages sent to correct processes.

Discarding messages from Byzantine processes If, according to its algorithm, a
process pj is assumed to send a single message tag() to a process pi, then pi processes
only the first message tag(v) it receives from pj. This means that, if pj is Byzantine and
sends several messages tag(v), tag(v′) where v′ 6= v, etc., all of them except the first
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one are discarded by their receivers. (Let us observe that this does not prevent multiple
copies of the first message tag() to be received and processed by their receiver.)

Notation This computation model is denoted [∅] (BAMP stands for “Byzantine Asyn-
chronous Message Passing”). As for [∅], this basic model is both restricted with a con-
straint on t and enriched with local coins. It is consequently denoted [t < n/α,LRC],
where α ≥ 1.

3.4.2 The no-duplicity broadcast abstraction

The foll wing broadcast abstraction will be a basic component used in the all-to-all SMV-
broadcast abstraction presented in Section 3.5 (which is the communication abstraction
on which is built the Byzantine-tolerant k-set algorithm presented in Section 3.6).

Definition of the ND-broadcast communication abstraction This abstraction is
defined by two operations denoted ND_broadcast() and ND_deliver(), which allow the
processes to eliminate bad behaviors of Byzantine processes. More precisely, a Byzantine
process is prevented from sending different messages to different correct processes, while
it is assumed to send the very same message to all of them.

As previously, when a process invokes ND_broadcast tag() we say that it ”ND-broadcasts”
a message, and when it invokes ND_deliver() we say that it ”ND-delivers” a message.
Considering an instance of ND-broadcast where the operation ND_broadcast tag() is
invoked by a process pi, this communication abstraction is defined by the following prop-
erties.

• ND-Validity. If a non-faulty process ND-delivers a message from pi, then, if it is
non-faulty, pi ND-broadcast this message.

• ND-No-duplicity. No two non-faulty processes ND-deliver distinct messages from
pi.

• ND-Termination. If the sender pi is non-faulty, all the non-faulty processes eventu-
ally ND-deliver its message.

Let us observe that, if the sender pi is faulty, it is possible that some non-faulty processes
ND-deliver a message from pi while others do not ND-deliver a message from pi. As already
indicated, the no-duplicity property prevents non-faulty processes from ND-delivering
different messages from a faulty sender.

An algorithm implementing ND-broadcast It is shown that t < n/3 is a necessary
requirement to implement ND-broadcast in a Byzantine asynchronous message-passing
system. Algorithm 3.2 implements ND-broadcast in n,t[t < n/3].

When a process pi wants to ND-broadcast a message whose content is vi, it broadcasts
the message nd_init(i, vi) (line 01). When a process receives a message nd_init(j,−)
for the first time, it broadcasts a message nd_echo(j, v) where v is the data content of
the nd_init() message (line 02). If the message nd_init(j, v) received is not the first
message nd_init(j,−), pj is Byzantine and the message is discarded. Finally, when pi
has received the same message nd_echo(j, v) from (n− t) different processes, it locally
ND-delivers msg(j, v) (lines 03-04).
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operation ND_broadcast msg(vi) is
(01) broadcast nd_init(i, vi).

when nd_init(j, v) is delivered do
(02) if

(
first reception of nd_init(j,−)

)
then broadcast nd_echo(j, v) end if.

when nd_echo(j, v) is delivered do
(03) if

(
nd_echo(j, v) received from (n− t) different processes and msg(j, v) not yet ND_delivered

)
(04) then ND_deliver msg(j, v)
(05) end if.

Figure 3.2: Implementing ND-broadcast in [t < n/3] (Algorithm 1)

The algorithm considers an instance of ND-broadcast, i.e., a correct process invokes at
most once ND-broadcast. Adding a sequence number to each message allows any process
to ND-broadcast a sequence of messages.

Theorem 1. Algorithm 3.2 implements ND-broadcast in the system model [t < n/3].

Proof (The proof is from [T84]. It is given for completeness.) To prove the ND-
termination property, let us consider a non-faulty process pi that ND-broadcasts the
message msg(vi). As pi is non-faulty, the message nd_init(i, vi) is received by all the
non-faulty processes, which are at least (n − t), and every non-faulty process broad-
casts nd_echo(i, vi) (line 02). Hence, each non-faulty process receives the message
nd_echo(i, vi). from (n− t) different processes. It follows that every non-faulty process
eventually ND-delivers the message msg(i, vi) (lines 03-04).

To prove the ND-no-duplicity property, let us assume by contradiction that two non-
faulty processes pi and pj ND-deliver different messages m1 and m2 from some process pk
(i.e., m1 = msg(k, v) and m2 = msg(k, w), with v 6= w). It follows from the predicate
of line 03, that pi received echo(k, v) from a set of (n − t) distinct processes, and pj
received echo(k, w) from a set of (n − t) distinct processes. As n > 3t, it follows that
the intersection of these two sets contains a non-faulty process. But, as it is non-faulty,
this sent the same message nd_echo() to pi and pj (line 02). Hence, m1 = m2, which
contradicts the initial assumption.

To prove the ND-validity property, we show that, if Byzantine processes forge and broad-
cast a message nd_echo(i, w) such that pi is correct and has never invoked ND_broadcast msg(w),
then no correct process can ND-deliver msg(i, w). Let us observe that at most t processes
can broadcast the message nd_echo(i, w). As t < n − t, it follows that the predicate
of line 03 can never be satisfied at a correct process. Hence, if pi is correct, no cor-
rect process can ND-deliver from pi a message that was not been ND-broadcast by pi.

�Theorem 1

It is easy to see that this implementation uses two consecutive communication steps and
O(n2) underlying messages (n − 1 in the first communication step, and n(n − 1) in the
second one). Moreover, there are two types of protocol messages, and the size of the
control information added to a message is log2 n (sender identity).
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3.4.3 k-Set agreement

Definition The intrusion-tolerant Byzantine (ITB) k-set agreement was informally pre-
sented in the introduction. When considering round-based randomized k-set agreement
algorithms (namely, the system model [LRC]) these properties are the following.

• B-KS-Validity. If a correct process decides v, then v was proposed by a correct
process.

• B-KS-Agreement. The set of values decided by the correct processes contains at
most k values.

• B-KS-P-Termination. limr→+∞
(
Probability [pi decides by round r]

)
= 1.

Additional constraint As stated in the introduction, we assume k ≤ t. Moreover, we
have also seen that, in order for a correct process to decide neither a value proposed only
by Byzantine processes, nor a predefined default value, it is assumed that, whatever the
domain of the values that can be proposed by the correct processes, in any execution, at
most m different values are proposed by correct processes, where m depends on n and t,
namely, n > t(m+ 1). As shown that, this condition is necessary.

Hence, assuming the non-triviality conditions k ≤ t, and the fact that, in any execution, at
mostm different values are proposed by the correct processes, the system model considered
here to solve the ITB k-set agreement problem is [t < n/(m+ 1),LRC].

3.5 TwoMultivalued Validated Broadcast Abstractions
This section presents the all-to-all communication abstractions MV-broadcast and SMV-
broadcast. “All-to-all” mean that it is assumed that all the non-faulty processes invoke the
corresponding broadcast operation. As indicated in the introduction, these abstractions
extend to the “multivalue” case the BV-broadcast and SBV-broadcast communication
abstractions , which consider binary values only.

3.5.1 Multivalued validated all-to-all broadcast

Definition of MV-broadcast This communication abstraction provides the processes
with a single operation denoted MV_broadcast(). When a process invokes MV_broadcast
tag(m), we say that it “MV-broadcasts the message typed tag and carrying the value
m”. The invocation of MV_broadcast tag(m) does not block the invoking process. The
aim of MV-broadcast is to eliminate the values (if any) that have been broadcast only by
Byzantine processes.

In each instance of the MV-broadcast abstraction, each correct process pi MV-broadcasts
a value and eventually obtains a set of values. To store these values, MV-broadcast
provides each process pi with a read-only local variable denoted mv_valuesi. This set
variable, initialized to ∅, increases asynchronously when new values are received. Each
instance of MV-broadcast is defined by the four following properties.

• MV-Termination. The invocation of MV_broadcast() by a correct process termi-
nates.

• MV-Justification. If pi is a correct process and v ∈ mv_validi, v has been MV-
broadcast by a correct process.
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• MV-Uniformity. If pi is a correct process and v ∈ mv_validi, eventually v ∈
mv_validj at every correct process pj.

• MV-Obligation. Eventually the set mv_validi of each correct process pi is not
empty.

The following properties are immediate consequences of the previous definition.
• MV-Equality. The setsmv_validi of the correct processes are eventually non-empty

and equal.
• MV-Integrity. The set mv_validi of a correct process pi never contains a value

MV-broadcast only by Byzantine processes.

On the feasibility condition n > (m + 1)t Let m be the number of different values
MV-broadcast by correct processes. It follows from the previous specification that, even
when the (at most) t Byzantine processes propose the same value w, which is not proposed
by correct processes, w cannot belong to the set mv_validi of a correct process pi. This
can be ensured if and only if there is a value MV-broadcast by at least (t + 1) correct
processes. This feasibility condition is captured by the predicate n − t > mt . Hence
n > (m + 1)t is a feasibility condition for MV-broadcast to cope with up to t Byzantine
processes. Let us notice that, as m ≥ 2, n > (m+ 1)t implies n > 3t.

An MV-broadcast algorithm Algorithm 3.3 describes a simple implementation of
MV-broadcast, suited to the system model [t < n/(m + 1)]. This algorithm is based on
a simple “echo” mechanism. Differently from previous echo-based algorithms , the echo
is used here with respect to each value that has been received (whatever the number of
processes that broadcast it), and not with respect to each pair composed of a value plus
the identity of the process that broadcast this value. Hence, a value entails at most one
echo per process, whatever the number of processes that MV-broadcast this value.

let witness(v) = number of different processes from which mv_val(v) was received.

operation MV_broadcast msg(vi) is
(01) broadcast mv_val(vi); return().

when mv_val(v) is received
(02) if (witness(v) ≥ t + 1) ∧ (mv_val(v) not yet broadcast)
(03) then broadcast mv_val(v) % a process echoes a value only once %
(04) end if;
(05) if (witness(v) ≥ n− t) ∧ (v /∈ mv_validi)
(06) then mv_validi ← mv_validi ∪ {v} % local delivery of a value %
(07) end if.

Figure 3.3: Implementing MV-broadcast in [t < n/(m+ 1)] (Algorithm 2)

When a process pi invokes MV_broadcast msg(vi), it broadcasts mv_val(vi) to all the
processes (line 01). Then, when a process pi receives (from any process) a message
mv_val(v), (if not yet done) it forwards this message to all the processes (line 03) if
it has received the same message from at least (t+ 1) different processes (line 02). More-
over, if pi has received v from at least (2t+ 1) different processes, the value v is added to
mv_validi (lines 05-06). Let us notice that, except in the case where |mv_validi| = m,
no correct process pi can know if its set mv_validi has obtained its final value.
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Cost of the algorithm As at mostm values are MV-broadcast by the correct processes,
it follows from the text of the algorithm that each correct process broadcasts each of
these values at most once (at line 01 or line 03). Hence, if there are c ∈ [n− t..n] correct
processes, their broadcasts entail the sending of at most m c n messages mv_val().
Finally, whatever the number of values that are MV-broadcast, the algorithm requires at
most two communication steps.

3.5.2 Synchronized multivalued validated all-to-all broadcast

Definition of SMV-broadcast This all-to-all communication abstraction provides the
processes with a single operation denoted SMV_broadcast tag(). As indicated by its
name, its aim is to synchronize processes so that, if a single value v is delivered to a
correct process, then v is delivered to all the correct processes.

In each instance of the SMV-broadcast abstraction, each correct process invokes SMV_broadcast
tag(). Such an invocation returns to the invoking process pi a set denoted viewi and
called a local view. We say that a process contributes to a set viewi if the value it SMV-
broadcasts belongs to viewi. SMV-broadcast is defined by the following properties.

• SMV-Termination. The invocation of SMV_broadcast tag() by a correct process
terminates.

• SMV-Obligation. The set viewi returned by a correct process pi is not empty.
• SMV-Justification. If pi is correct and v ∈ viewi, then a correct process SMV-

broadcast v.
• SMV-Inclusion. If pi and pj are correct processes and viewi = {v}, then v ∈ viewj.

• SMV-Contribution. If pi is correct, at least (n − t) processes contribute to its set
viewi.

• SMV-No-duplicity. Let be the union of the sets viewi of the correct processes. A
process contributes to at most one value of .

The following property is an immediate consequence of the previous definition. prop-
erty.

• SMV-Singleton. If pi and pj are correct, [(viewi = {v}) ∧ (viewj = {w})] ⇒ (v =
w).

Let v ∈, pi a correct process, and pj a Byzantine process. It is possible that, while the value
v was SMV-broadcast by pi (hence pi contributed to ), pj also appears as contributing
to with the same value v. The SMV-No-duplicity property states the following: no value
w ∈ \{v} appears as a contribution of pj.

An SMV-broadcast algorithm Algorithm 3.4 implements the SMV-broadcast ab-
straction in the system model [t < n/(m + 1)]. A process pi first MV-broadcasts a
message msg (vi) and waits until the associated set mv_valuesi is not empty (lines 01-
02). Let us remind that, when pi stops waiting, mv_valuesi has not necessarily obtained
its final value. Then, pi extracts a value w from mv_valuesi and ND-broadcasts it to
all (line 03). Let us notice that, due to the ND-no-duplicity property, no two correct
processes can ND-deliver different values from the same Byzantine process.
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operation SMV_broadcast msg (vi) is
(01) MV_broadcast msg(esti);
(02) wait (mv_valuesi 6= ∅);

% mv_valuesi has not necessarily its final value when the wait statement terminates %
(03) ND_broadcast nd_aux(w) where w ∈ mv_valuesi;
(04) wait (∃ a set viewi such that its values (i) belong to mv_valuesi, and

(ii) come from messages nd_aux() received from (n− t) distinct processes);
(05) return (viewi).

Figure 3.4: Implementing SMV-broadcast in [t < n/(m+ 1)] (Algorithm 3)

Finally, pi waits until the predicate of line 04 is satisfied. This predicate has two aims. The
first is to discard from viewi (the set returned by pi) a value broadcast only by Byzantine
processes. Hence the predicate viewi ⊆ mv_valuesi. The second aim is to ensure that,
if the view viewi of a correct process pi contains a single value, then this value eventually
belongs to the view viewj of any correct process pj. To this end, (n−t) different processes
(hence, at least (n− 2t) correct processes) must contribute to viewi.

Multiset version of SMV-broadcast While a value belongs or does not belong to
a set, a multiset (also called a bag) is a set in which the same value can appear several
times. As an example, while {a, b, c} and {a, b, b, c, c, c} are the same set, they are different
multisets.

It is easy to see that the “set” version of the SMV-broadcast (where viewi is a set)
and Algorithm 3.4 can be easily converted into a “multiset” version where viewi is a
multiset.

3.6 Byzantine Model: a Randomized k-Set Agreement
Algorithm

This section presents and proves correct an algorithm which the k-set agreement problem
in [t < n/(m + 1),LRC]. This algorithm is built in a modular way on top of the SMV-
broadcast communication abstraction.

3.6.1 Description of the algorithm

Local variables To solve the ITB k-set agreement problem, Algorithm 3.5, which is
round-based, relies on a very modular construction. Each process pi manages two lo-
cal variables whose scope is the whole execution: a local round number ri, and a local
estimate of a decision value, denoted esti. It also manages three local variables whose
scope is the current round r: a multiset viewi[r, 1], an auxiliary variable aux, and a set
viewi[r, 2].

Description of the algorithm When pi invokes proposek(vi) it assigns vi to esti and
initializes ri to 0 (line 01). Then pi enters a loop that it will exit at line 08 by ex-
ecuting return(v), which returns the decided value v and stops its participation in the
algorithm.
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operation proposek(vi) is
(01) esti ← vi; ri ← 0;
(02) repeat forever
(03) ri ← ri + 1;
// ———————————— phase 1 ———————————————————–
(04) viewi[ri, 1]← SMV_broadcast phase[ri, 1](esti); % viewi[ri, 1] is a multiset %
(05) if (∃v appearing W times in viewi[ri, 1]) then aux← v else aux← ⊥ end if;
// ———————————— phase 2 ———————————————————–
(06) viewi[ri, 2]← SMV_broadcast phase[ri, 2](aux); % viewi[ri, 2] is a set %
(07) case (⊥ /∈ viewi[ri, 2]) then let v be any value ∈ viewi[ri, 2];
(08) broadcast decide(v); return(v)
(09) (viewi[ri, 2] = {⊥, v, · · · }) then esti ← any value non-⊥ ∈ viewi[ri, 2]
(10) (viewi[ri, 2] = {⊥}) then esti ← random(mv_validi[1, 1])
(11) end case
(12) end repeat.

Figure 3.5: Byzantine k-set agreement based on SMV-broadcast, and local random coins
(Algorithm 4)

Each round r executed by a process pi is made up of two phases. During the first phase
of round r, each correct process pi invokes SMV_broadcast(esti) (multiset version) and
stores the multiset returned by this invocation in viewi[r, 1]. Let us remind that this
multiset contains only values SMV-broadcast by at least one correct process. The aim of
this phase is to build a global set 2, denoted [r], which contains at most (k + 1) values,
such that at most k of them are contributed by correct processes, and the other one is
the default value ⊥. To this end, each correct process pi checks if there is a value v that
appears “enough” (say W ) times in the multiset viewi[r, 1]. If there is such a value v, pi
adopts it (assignment aux← v), otherwise it adopts the default value ⊥ (line 05).

The set [r] is made up of the aux variables of all the correct processes. For [r] to contain at
most k non-⊥ values,W has to be such that (k+1)W > n (there are not enough processes
for (k+1) different values such that each of them was contributed byW processes. Hence,
W > n/(k + 1).

When it starts the second phase of round r, each correct process pi invokes SMV_broadcast(aux)
(set version) and stores the set it obtains in viewi[r, 2]. Due to the properties of SMV-
broadcast, viewi[r, 2] is a local approximation of [r], namely, we have viewi[r, 2] ⊆ [r].
Then, the behavior of pi depends on the content of the set viewi[r, 2].

• If ⊥ /∈ viewi[r, 2], pi decides any value in viewi[r, 2] (lines 07-08).
• If viewi[r, 2] contains ⊥ and non-⊥ values, pi updates its current estimate esti to

any non-⊥ value of viewi[r, 2] and starts new round (line 09).
• If viewi[r, 2] contains only ⊥, pi starts a new round, but updates previously its

current estimate esti to a random value (line 10). This random value is obtained
from the set (denoted mv_validi[1, 1] in the algorithm) locally output by the first
MV-broadcast instance invoked by pi. The use of these sets allows the algorithm
to benefit from the fact that these sets are eventually equal at all correct processes
(MV-Equality property). The KS-Termination relies on this property.

2While the value of this set could be known by an external global observer, its value can never be
explicitly known by a correct process. However, a process can locally build an approximation of it during
the second phase, see below.
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As shown in the proof, an important behavioral property of the algorithm lies in the fact
that, at any round r, it is impossible for two correct processes pi and pj to be such that
(⊥ /∈ viewi[r, 2])∧ (viewi[r, 2] = {⊥}). These two predicates are mutually exclusive.

On the value of W (This discussion is similar to the one on the definition of W and R
appearing in Section 3.3.1.) The valueW is used at line 05 for a safety reason, namely, no
more than k non-⊥ values can belong to the set [r]. As we have seen, this is captured by
the constraint W (k + 1) > n. It appears that W has also to be constrained for a liveness
reason, namely, when the correct processes start a new round r with at most k different
estimates values, none of them must adopt the value ⊥ at line 05 (otherwise, instead of
deciding at line 07, they could loop forever).

This liveness constraint is as follows. Let us consider the size of the multiset viewi[r, 1]
obtained at line 04. In the worst case, when the correct processes start a new round r
with at most k different estimates, viewi[r, 1] may contain (k − 1) different values, each
appearing (W − 1) times, and only one value that appears W times. Hence, viewi[r, 1]
must contain at least R = (W − 1)(k − 1) + W = (W − 1)k + 1 elements. As it follows
from Algorithm 3.4 that |viewi[r, 1] ≥ n − t, we obtain the liveness constraint n − t ≥
(W − 1)k + 1.

On message identities The messages phase() SVM-broadcast at line 04 and line 06
are identified by a pair [r, x] where r is a round number and x ∈ {1, 2} a phase number.
Each of these messages gives rise to underlying messages nd_aux() (Algorithm 3.3),
mv_val() (Algorithm 3.2), and underlying sets witness() (Algorithm 3.2). Each of
them inherits the pair identifying the message phase() it originates from.

On the messages decide() Before a correct process decides a value v, it sends a
message decide(v) to each other process (line 08). Then, it stops its execution. This
halting has not to prevent correct processes from terminating, which could occur if they
wait forever underlying messages nd_aux() or mv_val() from pi.

To this end, a message decide(v) has to be considered as representing an infinite set of
messages. More precisely if, while executing a round r, a process pi receives a message
decide(v) from a process pj, it considers that it has received from pj the following set of
messages: {nd_aux[r′, 1](v), nd_aux[r′, 2](v), mv_val[r′, 1](v), mv_val[r′, 2](v)}r′≥r.
It is easy to see that the messages decide() simulate a correct message exchange that
could be produced, after it has decided, by a deciding but non-terminating process.

Another solution would consist in using a Reliable Broadcast abstraction that copes with
Byzantine processes. In this case, a process could decide a value v as soon as it has
RB-delivered (t+ 1) messages decide(v).

3.7 Conclusion
This chapter was on k-set agreement in two types of asynchronous message-passing, the
ones where processes may commit crash failures, and the ones where they may commit
Byzantine failures. As k-set agreement cannot be solved in these basic system models
without additional computational power, the chapter considered the computational power
provided by local multi-sided random coins.
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Chapter 4

Implementing Timely Provable reliable
Send Primitive

4.1 Introduction
Broadcast abstractions are among the most important abstractions required to address
fault-tolerant distributed computing. Roughly speaking, these abstractions allow pro-
cesses to disseminate information in such a way that specific provable properties concern-
ing this dissemination are satisfied.

In this chapter , we present an authenticated algorithm implementing provable reliable
send primitive. This primitive is used for solving Byzantine consensus in signature-free
asynchronous distributed systems.

4.2 System model and synchrony assumptions
We consider a message-passing system consisting of a finite set Π of n(n > 1) processes,
namely, Π = {p1, . . . , pn}. A process executes steps (send a message, receive a message or
execute local computation). Value t denotes the maximum number of processes that can
exhibit a Byzantine behavior. A Byzantine process may behave in an arbitrary manner. It
can crash, fail to send or receive messages, send arbitrary messages, start in an arbitrary
state, send different values to different processes, perform arbitrary state transitions, etc.
A correct process is one that does not Byzantine. A faulty process is the one that is not
correct. Processes communicate and synchronize with each other by sending and receiving
messages over a network. The link from process pi to process pj is denoted pi → pj. Every
pair of process is connected by two links p → pj and pj → pi. Links are assumed to be
reliable: they do not create, alter, duplicate or lose messages. Processes are partially
synchronous, in the sense that there are unknown bounds on relative speed of a correct
process . Hereafter, we define more formally a synchrony assumption required by our
implementation of provable reliable send.

Definition 1. A link from a process pi to any process pj is timely at time τ if no message
sent by pi at time τ is received at pj after time (τ + ∆) or pj is not correct.
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Definition 2. A process pi is 〈x〉-sink at time τ if: pi is correct process and there exists a
set X of correct processes (including itself) of size x, such that: for any process pj in X,
a link from pj to pi is timely at time τ . This means that pi has x incoming synchronous
links.

Definition 3. A process pi is an �〈x〉-sink if there is a time τ such that, for all τ ′ ≥ τ , pj
is an 〈x〉-sink at τ ’.

Notation The notation [∅] (BAMP stands for Byzantine Asynchronous Message Pass-
ing) is used to denote the previous basic Byzantine asynchronous message-passing com-
putation model. In the following, this model is both restricted with a constraint on t
and enriched with additional assumption about synchrony . More precisely, [n > 3t]
denotes the model [∅] where the number of faulty processes is smaller than n/3, and
[n > 3t, RSA, 〈t+ 1〉-source] denotes the model [n > 3t] enriched with an authentication
mechanism such as RSA and a synchrony assumption satisfied by a 〈t+ 1〉-sink.

4.3 Provable reliable send Primitive
Provable Reliable Send is a primitive that can be used by a process pi to send a message
QUERY(m) to pj such that a third process pr gets a proof that QUERY(m) is in transit.
Provable reliable send is defined by the following three primitives:

1. Psend QUERY(m, pj): if a process pi invokes Psend QUERY(m, pj), we say that pi
psends QUERY(m) to pj;

2. Preceive QUERY(pi,m) : if a process pj invokes Preceive QUERY(pi,m), we say
that pj preceives QUERY(m) from pi;

3. Gproof QUERY(m, pi, pj) : if a process pr invokes Gproof QUERY(m, pi, pj), we
say that pr getsproof of QUERY(m) from pi to pj.

Formally, provable reliable send is defined by the following fourth properties:

• Integrity: A correct process pj preceives QUERY(m) from a correct process pi at
most once, and only if pi has previously psent QUERY(m) to pj;

• Validity: If some correct process pi psends QUERY(m) to some correct process pj
then eventually pj preceives QUERY(m) from pi;

• Proof-Integrity: If some correct process pr getsproof of QUERY(m) from some process
pi to some correct process pj, then pj preceives QUERY(m) from pi;

• Proof-Validity: If some correct process pi psends QUERY(m) to some correct process
pj then every correct process pr getsproof of QUERY(m) from pi to pj.

This primitive considers eventually timely provable reliable send, which guarantees that if
the final receiver pj of the message QUERY(m) is a bisource then eventually QUERY(m)
cannot be received too much later than the proof. Formally, they define the following
eventual timeliness propriety:

For a system that does not need authentication, if a process pj is a bisource then there
exists τ and T such that if some correct process pr getsproof of QUERY(m) from some pro-
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Each process pi executes the following
—————————————————————————————————-

(01) To Psend query(m) to pj ;
(02) send query(m, pi, pj) to all;
(03) upon receive query(m, s, d) from pk
(04) if (s = pk) and i 6= k then send query(m, pk, d) to all;
(05) if(pi = d) and

(
received query(m, s, d) from at least One process

and not already Preceive query(m, s) then Preceive query(m, s)
)
;

(06) if received query(m, s, d) from (n− t) distinct processes then Gpoof query(m, s, d));

Figure 4.1: A Provable Reliable Send Algorithm in [n > 3t, RSA, 〈t+ 1〉-source])

cess pi to process pj at time τ then pj perceives QUERY(m) from pi by time max{τ, T}+
∆.

4.4 An Algorithm Implementing Provable Reliable Send
in [n > 3t, RSA, 〈t + 1〉-source]

Figure 4.1 presents an algorithm implementing provable reliable send primitive. It assume
that an authentication mechanism such us RSA is available. A public key cryptography
signatures is used by a process to verify the identity of the original sender of the message
and to force a Byzantine process to relay the original message that it’s received if it decides
to relaying it.

If a correct process pi invokes Psend QUERY(m) to pj then pi send a message QUERY(m, pi, pj)
to all processes (lines 01-02). When pi receives a message QUERY(m, s, d) from pk, if pk is
the original sender (s = pk) and pi is not the original sender ( this is to prevent a process
pi to send a same message an infinite times), then pi sends QUERY(m, pk, d) to all pro-
cesses (lines 03-04). If pi is the final destinator (d = pi) of a message QUERY(m, s, d) and
it receives this message from at least one process then pi invokes Preceive QUERY(s,m)
(line 05), if it has not previously invoked. If pi has received QUERY(m, s, d) from (n− t)
distinct processes then pi invokes Gproof QUERY(m, s, d) (line 06).

4.5 Conclusion
In this chapter, we presented an algorithms that implements eventually timely provable
reliable send primitive in the system model[n > 3t, RSA, 〈t+ 1〉-source]. This implemen-
tations guarantee that a message sent by a correct sender pi will arrive with timely way
to the receiver pj if a third party pr getsproof of this message from the original sender to
the receiver and the receiver is a 〈t+ 1〉-source , even the link between the sender and the
receiver is asynchronous.
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Chapter 5

Asynchronous Multi-valued Byzantine
Consensus with Little Synchrony

5.1 Introduction
This chapter tackles the consensus problem in asynchronous systems prone to Byzantine
failures. One way to circumvent the FLP impossibility result consists in adding synchrony
assumptions. This chapter considers three system models, which are weaker than all
previously proposed models where the Byzantine consensus can be solved in deterministic
manner. The first model assumes at least one correct process connected with 2t privileged
neighbors with eventually timely outgoing and incoming links, whereas the second assumes
at least one correct process with 2t outgoing eventually timely links and 2t incoming
eventually timely links. The second model is a relaxation of the former as it does not
consider pair-wise links such that each pair of links connects a same pair of processes
in each direction. Finally,the latter model is similar to the second, but a correct process
could have 3t, instead of 2t, outgoing eventually timely links and 3t,instead of 2t incoming
eventually timely links. In those system models, three Byzantine consensus protocols are
proposed. Both first protocols use authentication, but the latter one is a signature-free
protocol.

5.2 Computation Model and the Consensus Problem

5.2.1 Computation Model

The system model is patterned after the partially synchronous system . The system is
made up of a finite set Π of n (n > 1) fully-connected processes, namely, Π = {p1, . . . , pn}.
Moreover, up to t processes can exhibit a Byzantine behavior, which means that such
a process can behave in an arbitrary manner. This is the most severe process failure
model: a Byzantine process can crash, fail to send or receive messages, send arbitrary
messages, start in an arbitrary state, send different values to different processes, perform
arbitrary state transitions, etc. A process that exhibits a Byzantine behavior is called
faulty. Otherwise, it is correct.
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Communication network The communication network is reliable in the sense that a
message sent by a correct process to another correct process will be received exactly once
within a finite time. Messages are not altered by the link and the receiver knows who
the sender is. In other words, we are using authenticated asynchronous links. Such a
communication network can be built atop of fair lossy links which is the classical commu-
nication model used when dealing with Byzantine processes (in fair lossy links, a message
can be lost a finite number of times). They prove that even a simple retransmission until
acknowledgment protocol suffices to implement a reliable link between correct processes.
Using these techniques, a message that was initially lossy will eventually be received by
its receiver if the sender and the receiver are correct. Note that the simulation preserves
the timeliness of the messages sent on timely fair-lossy links.

Synchrony properties Every process executes an algorithm consisting of atomic com-
puting steps (send a message, receive a message or execute local computation). We assume
that processes are partially synchronous, in the sense that every correct process takes at
least one step every θ steps of the fastest correct process (θ is unknown). Instead of
real-time clocks, time is measured in multiples of the steps of the fastest process . In par-
ticular, the (unknown) transfer delay bound δ is such that any process can take at most
δ steps while a timely message is in transit. Hence, we can use a simple step-counting for
timing out messages. Hereafter, we define more formally a timely link, an x-bisource and
an x-SD.

Definition 4. A link from a process pi to any process pj is timely at time τ if (1) no
message sent by pi at time τ is received at pj after time (τ + δ) or (2) process pj is not
correct.

Definition 5. A process pi is an x-bisource at time τ if:
- (1) pi is correct
- (2) There exists a set X of processes of size x, such that: for any process pj in X, both
links from pi to pj and from pj to pi are timely at time τ . The processes of X are said to
be privileged neighbors of pi.

Definition 6. A process pi is an �x-bisource if there is a time τ such that, for all τ ′ ≥ τ ,
pi is an x-bisource at τ ′.

Definition 7. A process pi is an x-SD (S for Source and D for destination) at time τ if:
- (1) pi is correct
- (2) There exists two sets X and Y of processes of size x such that for any process pj
in X the link from pi to pj is timely at time τ and for any process pk in Y the link from
pk to pi is timely at time τ . If X = Y then pi is an x-bisource. The processes of X are
said to be privileged out-neighbors of pi and the processes of Y are said to be privileged
in-neighbors of pi.

Definition 8. A process pi is an �x-SD if there is a time τ such that, for all τ ′ ≥ τ , pi is
an x-SD at τ ′.
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5.2.2 Byzantine behavior and authentication

A Byzantine process is a process the behavior of which can deviate from its specification.
Such a process can send information that does not comply with the text of the protocol
it is intended to execute (sending more messages than expected, sending messages with
wrong headers, sending values from a different type than expected, etc.). This behavior
can be easily detected and the incriminated process is tagged Byzantine and is ignored
(all his messages are ignored and no information is no more expected from it). A second
behavior is that a Byzantine process can remain silent which corresponds to a crash failure.
A Byzantine process can also send different values to different processes. For example, let
pb be a Byzantine process which is expected to send a value from the set {x, y} to some
processes. At some point of the execution, process pb sends a value x where it should send
value y. A receiving process cannot know that pb is Byzantine as the received value is a
plausible value. Finally, a Byzantine process can send a value x to some processes and a
value y to the others. If the message is properly formed (according to the protocol), the
receiving processes can exhibit inconsistent behaviors as they receive inconsistent data.
This behavior is called duplicity. Finally, a Byzantine process can send a wrong, but
plausible value.

In order to deal with these behaviors, the proposed protocols will use some mechanisms.
Let us first give an idea of the programming model of the protocols we propose. The
proposed protocols are composed of a series of communication steps. During a step,
each of a given number of processes (a priori known) send one message to a given set of
processes (also known a priori). Then each process waits for a received message until some
predicate becomes true (a timer times-out or a minimum number of messages is received).
Finally, according to the received messages, some local computation is done.

During a communication step, a process pi may have to relay a value v it has received from
a process pj during the previous step. In order to prevent pi from sending a value w(w 6=
v). The proposed protocols use application level signatures (public key cryptography such
as RSA signatures). This means that the value received by pi from pj at the previous step
was signed by pj. pi can read and use the value by deciphering it but in order to relay it,
pi has to forward the signed value. By this means, pi cannot relay w if we assume that
pi cannot forge the signature of pj. If pi forwards any value different from v, it will be
detected and the receiver will know that pi is Byzantine. The only bad behaviors pi can
exhibit in this case without being discovered are (1) to remain silent, (2) to send a default
value (e.g. ⊥) meaning that it received no value from pj or (3) to send the right value
v. Consequently, cryptography allows us to reduce the power of Byzantine processes. Of
course, this means that in our model we assume that Byzantine processes are not able to
subvert the cryptographic primitives.

Let us consider a second scenario. During step s, each process sends a value to all other
processes. Then, each process waits for as many messages as possible. As at most t
processes may exhibit a Byzantine behavior, a process can face the situation where all of
the t Byzantine processes decide to remain silent. In order not to block forever waiting
for messages, a given process cannot expect more than n − t message during a general
exchange of messages. When the waiting predicate holds, each process keeps the maximal
value it received. This value will be sent to all processes during the next step s + 1. Let
us consider the case where all processes send at step s the value 0 except pn that sends
the value 1. To prevent a Byzantine process pb to send a value v different from 0 and
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1, each message has to carry a value and the set of n − t values received by pb during
the previous step s. The included signed values can be used by a receiving process to
check whether the value sent by process pb complies with the values pb received at step
s. This set of signed values is called certificate and its role is to prove to the receiver
that the value is legal. Indeed, as process pb can receive only values 0 and at most one
value 1, no set of signed values can justify a value v different from 0 and 1. Consequently
pb is obliged to send only possible values (of course, pb can remain silent and thus sends
nothing). However, if process pb received all of the n values of step s, it can build two sets
of values one that includes the values of processes ranging from 1 to n − t and a second
set of values that includes the values of processes ranging from t + 1 to n. The two sets
can justify respectively the values 0 and 1. Consequently, pb can send value 0 to some
processes and value 1 to the others without being discovered as both values are possible.
This means that the use of certificates does not prevent Byzantine process from sending
different possible values to different processes.

Finally, in order not to add to the protocol code that is not directly related to the proposed
solution, we assume that each process has an underlying daemon that filters the messages
it receives. For example, the daemon will discard all duplicate messages (necessarily sent
by Byzantine processes as we assume reliable send and receive operations between correct
processes). The daemon, will also discard all messages that are not syntactically correct,
or that do not comply with the text of the protocol (e.g. a process that sends two different
messages with the same type within the same communication step, a process that sends
a message to a wrong process, etc.). Of course a message that do not comply with the
associated certified is also discarded.

5.2.3 The Consensus Problem

The Consensus problem has been informally stated in the Introduction. This paper con-
siders multivalued Consensus (no bound on the cardinality of the set of proposable values):
every process pi proposes a value vi and all correct processes have to eventually decide on
some value v in relation with the set of proposed values. Let us observe that, in a Byzan-
tine failure context, the consensus definition should not be too strong. For example, it is
not possible to force a faulty process to decide the same value as the correct processes,
since a Byzantine process can decide whatever it wants. Similarly, it is not reasonable to
decide any proposed value since a faulty process can initially propose different values to
distinct processes and consequently the notion of “proposed value” may not be defined for
Byzantine processes. Thus, in such a context, the consensus problem is defined by the
following three properties:

• Termination: Every correct process eventually decides.

• Agreement: No two correct processes decide different values.

• Validity: If all the correct processes propose the same value v, then only the value v
can be decided.
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5.3 An Authenticated Byzantine Protocol With �2t-
bisource

The protocol of (Figure 5.1) uses authentication and assumes an �2t-bisource. Each
process pi manages a local variable esti which contains its current estimate of the decision
value. The init phase (lines 01-03) consists of an all-to-all message exchange that allows
to initializes the variable esti to a value that is received at least (n − 2t) times if any1.
Otherwise, esti is set vi the value proposed by pi. This phase establishes the validity
property. Indeed, if all correct processes propose the same value v, all processes will
receive v at least (n− 2t) times and the only value that can be received at least (n− 2t)
times is v. In such situation, when the different processes will proceed to the next rounds
v will be the only certified value (its certificate includes the (n − 2t) values v signed by
their senders and received during the init phase). From line 05 of the protocol, when a
process sends a value x it signs, it associates with it a certificate composed of the signed
values received during the previous phase and that led the process to keep this value.

After the init phase, the protocol proceeds in consecutive asynchronous rounds. Each
process pi manages a variable ri (initially set to 0). Each round r is coordinated by a
predetermined process pc (e.g., c can be defined according to the round robin order). So,
the protocol uses the well-known rotating coordinator paradigm. Each round is composed
of four communication phases.

First phase of a round r (lines 05-07). Each process that starts a round (including its
coordinator) first sends its own estimate (with the associated certificate) to the coordi-
nator (pc) of the current round and sets a timer to (∆i[c]). ∆i is an array of time-outs
(one per process) managed by pi. Each entry ∆i[j] keeps the estimation of pi of the round
trip delay from pi to pj followed by a local computation on pj and message return from
pj to pi. This value is set to 1 and each time pi sends a time-constrained message to pj,
a timer is set to ∆i[j]. If the timer times out while waiting for the response from pj,
∆i[j] is incremented and pi considers that either pj is not a privileged neighbor or pj is
Byzantine or the value ∆i[j] is not set to the right value. As ∆i[j] is incremented each
time pj’s responses misses the deadline, it will eventually reach the bound on the round
trip between pi and pj if pi and pj are privileged neighbors. Moreover, this prevents pi
from blocking while waiting (line 06) for the response of a faulty coordinator.

For any round, the coordinator will receive at least (n−t) query messages but it will send
coord messages only once and will ignore and subsequent query messages related to the
same round. When the coordinator of round r receives at line 19 a valid query message
(perhaps from itself) containing an estimate est for the first time, it sends a coord(r, est)
message to all processes. The coord message is sent from another parallel task because
the coordinator of round r could be waiting for other messages in previous rounds and
if it does not responds quickly, the sender of the query message may time out. This
is why, whatever is the coordinator doing, as soon as it receives a valid query message
for a round it coordinates, it sends the included estimate to all processes (this allows a
coordinator to coordinate a round with a certified value it has received even if it is itself
lying far behind). when a process pi receives the value of the coordinator, it stores it in

1This phase does not use certificates as there is no prior communication (the exchanged values are
not signed).
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its variable auxi otherwise this variable is set to a default value ⊥ meaning that no value
is received from the coordinator of this round.

If the current coordinator is a 2t-bisource and the round-trip delays (∆ array) with its 2t
privileged neighbors are correctly set then at least (t + 1) correct processes will get the
value v of the coordinator and thus set their variable aux to v (6= ⊥). The next phases
will serve to propagate this value from the (t+1) correct processes to all correct processes.
Indeed, among the 2t privileged neighbors of the current coordinator at least t are correct
processes and all of them will receive the value of the coordinator before their timers
time-out. If we add the coordinator itself we have (t+ 1) correct processes. If the current
coordinator is Byzantine, it can send nothing to some processes and/or perhaps send
different certified values to different processes (in such a case, necessarily none of these
values has been decided in a previous round as we will see later). If the current coordina-
tor is not a 2t-bisource or if it is Byzantine, the three next phases allow correct processes
to behave in a consistent way. Either none of them decides or if some of them decides a
value v despite the Byzantine behavior of the coordinator, then the only certified value
for the next round will be v preventing Byzantine processes from introducing other values.

Second phase of a round r (lines 08-10). This phase aims to extend the scope of the
2t-bisource. Indeed, if the current coordinator is a 2t-bisource then at least (t+1) correct
processes set their variable auxi to the same non-⊥ value (say v). During the second
phase, all processes relay, using an all-to-all message exchange, the value they got from
the coordinator (with its certificate) or ⊥ if they timed out. Each process pi collects
(n− t) valid messages (the deciphered values carried by these messages are stored into a
set Vi - of course each value appears at most once in Vi as Vi is a set). If the coordinator is
a 2t-bisource then any correct process will get at least one message from the set of (t+ 1)
correct processes that got the value of the coordinator because (n− t)+(t+1) > n. If the
coordinator is not a 2t-bisource or if it is Byzantine, some processes can receive only ⊥
values, others may receive more than one value (the coordinator is necessarily Byzantine
in this case) and some others can receive a unique value. This phase has no particular
effect in such a case. The condition (Vi − {⊥} = {v}) of line 10 means that if there is
only one non-⊥ value v in Vi then this value is kept in auxi otherwise, auxi is set to ⊥.

Third phase of a round r (lines 11-13). This phase has no particular effect if the coordina-
tor is correct. Its aims is to deal with the situations where the coordinator is Byzantine.
Indeed, in such a case two different correct processes may have set their auxi variables
to different values during the second phase. Phase three is thus a filter, it ensures that
at the end of this phase, at most one non_⊥ value is kept in the aux variables. In other
words, at the end of this phase, if pi and pj are two correct processes and if auxi 6= ⊥
and auxj 6= ⊥ then necessarily auxi = auxj whatever is the behavior of the Byzantine
processes. This phase consists of an all-to-all message exchange. Each process collects
(n− t) valid messages the values of which are stored in a set Vi. If all received messages
contain the same value v (Vi = {v}) then v is kept in auxi otherwise auxi is set to the
default value ⊥. At the end of this phase, there is at most one (or none) certified value v
(6= ⊥).

Fourth phase of a round r (lines 14-17). This phase is the decision phase. Processes try
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to decide. For a process to decide a value v, it has to ensure first that this value will be
the only certified value for next rounds and will be known by all correct processes (such a
value is then said to be locked). For this, processes exchange their auxi variables using an
all-to-all message exchange. Recall that after phase three, there is at most one certified
value (say v) in auxi variables. This means that at the beginning of the fourth phase a
process (whether correct or Byzantine) can send only the unique value v (if any) or ⊥
(otherwise the message will be non valid). Processes collect (n − t) valid messages and
store the values in Vi. If the set Vi of a process pi contains a unique non_⊥ value v, pi
decides v. Indeed among the (n − t) same values v received by pi, at least n − 2t have
been sent by correct processes. As (n− t) + (n− 2t) > n any set of (n− t) valid signed
messages of this phase includes at least one value v. Hence, all processes receive at least
one value v (the other values could be v or ⊥) and the only certified value for the next
rounds is v. This means that during the next round (if any) no coordinator (whether
correct or Byzantine) can send a valid value different from v.

If during the fourth phase, a process pi receives only ⊥ values, it is sure that no process
can decide during this round and thus it can keep the value it has already stored in esti
(the certificate composed of the (n− t) valid signed messages received during phase four
containing ⊥ values, allow pi to keep its previous values esti).

Before deciding (line 16), a process first sends to all other processes a signed message dec
that contains the decision value (and the associated certificate). This will prevent the
processes that progress to the next round from blocking because some correct processes
have already decided and stopped sending messages. When a process pi receives a valid
dec message at line 20, it first relays is to all other processes and then decides. Indeed,
task T3 is used to implement a reliable broadcast to disseminate the eventual decision value
preventing some correct processes from blocking while others decide (not all processes
decide necessarily during the same round).

5.4 An Authenticated Byzantine Consensus Protocol
with a ♦2t-SD

The protocol of (Figure 5.2) is an extension of the first protocol. The protocol uses
authentication and assumes an ♦2t-SD (2t outgoing eventually synchronous links and
2t incoming eventually synchronous links). The principle of protocol is similar to the
protocol that assumes an ♦2t-bisource except for the coordination phase of each round
(lines 05-07) that are replaced by lines 101-104. Each process manages same local variables
as in the first protocol. When a given process pi (including the coordinator of the round)
starts a round r it first sends its own estimate (with the associated certificate) to all the
processes (in the previous protocol, the message is sent only to the coordinator of the
round). Moreover, instead of arming the timer just after this sending, each process has
to wait the reception of at least (n− t) QUERY(r, ∗) messages before arming the timer.
the protocol then behaves like the previous one. If a coord(r, est) is received from the
coordinator of the current round, the timer is disabled and if the timer times-out, the
auxi variable is set to the default value ⊥ and the estimation of the response time ∆i[c]
is incremented.

The intuition that is behind this modification is the following. When we assume an ♦2t-
bisource, there is a time after which a privileged neighbor pi is sure that for any request
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Function Consensus(vi)

Init: ri ← 0; ∆i[1..n]← 1;

Task T1: % basic task %
——————————————————- init phase ———————————————————–

(01) send init(vi) to all;
(02) wait until

(
init messages received from at least (n− t) distinct processes

)
;

(03) if
(
∃v : received at least (n− 2t) times

)
then esti ← v else esti ← vi endif;

repeat forever
(04) c← (ri mod n) + 1; ri ← ri + 1;

—————————————————- round ri ———————————————————–
(05) send query(ri, esti) to pc; set_timer(∆i[c]);
(06) wait until

(
coord(ri, est) received from pc or time-out

)
store value in auxi; % else ⊥ %

(07) if (timer times out)) then ∆i[c]← ∆i[c] + 1 else disable_timer endif;

(08) send relay(ri, auxi) to all;
(09) wait until

(
relay(ri, ∗) received from at least (n− t) distinct processes) store values in Vi;

(10) if (Vi − {⊥} = {v}) then auxi ← v else auxi ← ⊥ endif;

(11) send filt1(ri, auxi) to all;
(12) wait until

(
filt1(ri, ∗) received from at least (n− t) distinct processes) store values in Vi;

(13) if (Vi = {v}) then auxi ← v else auxi ← ⊥ endif;

(14) send filt2(ri, auxi) to all;
(15) wait until

(
filt2(ri, ∗) received from at least (n− t) distinct processes) store values in Vi;

(16) case (Vi = {v}) then send dec(v) to all; return(v);
(17) (Vi = {v,⊥}) then esti ← v;
(18) endcase;

————————————————————————————————————————–
end repeat

Task T2: % coordination task %
(19) upon receipt of query(r, est) for the first time for round r: send coord(r, est) to all;

Task T3:
(20) upon receipt of dec(est): send dec(est) to all; return(est);

Figure 5.1: An Authenticated Byzantine Consensus Protocol (assumes a �2t-bisource)
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(101) send query(ri, esti) to all;
(102) wait until

(
query(ri, ∗) received from at least (n− t) distinct processes

)
; set_timer(∆i[c]);

(103) wait until
(

coord(ri, est) received from pc or time-out
)

store value in auxi; % else ⊥ %
(104) if (timer times out)) then ∆i[c]← ∆i[c] + 1 else disable_timer endif;

Figure 5.2: An Authenticated Byzantine Consensus Protocol (assumes a �2t-SD)

sent to the bisource it will receive the response before the time-out. This is due to the
fact that by the model assumption, the two links is both direction between pi and the
bisource are timely and the processes are eventually synchronous. This means that pi
can no more miss the coord(r, est) messages of the bisource. In the present situation, a
privileged neighbor of the SD is connected to it either by an outgoing link or an incoming
link that is eventually timely. This is why lines 05-07 of the first protocol need to be
changed. Let pi be a privileged neighbor of the ♦2t-SD with which it is connected by an
eventually timely outgoing link. Similarly to the previous case, there is a time after which
all the links that compose the SD are timely. This means that when process pi receives
the (n− t) messages at line 102 during a round coordinated by the SD, it is sure that at
least (n−t) processes sent a QUERY(r, ∗) message to the SD. As the SD has 2t+1 timely
incoming links (2t of the ♦2t-SD and the SD itself) among which at least t+ 1 are correct
processes, as there are at most t Byzantine processes in the system, pi is sure that at least
one message QUERY(r, ∗) is already sent by some process pj to the SD on a timely link.
This why pi can set a timer and wait for a time delay that corresponds to a transfer delay
from pj to the SD plus the local computation time on the SD and then a transfer delay
from the SD to pi. By the model assumption, this delay is eventually bounded by some
value b and as the local variables ∆i are incremented after every time-out, there will be a
time after which the ∆i[] delay will reach the value b. Thus process pi that is connected
with an eventually timely incoming link with the SD will never time-out while waiting
the coord(r, est) messages of the SD.

5.5 A Byzantine Consensus Protocol In Signature-Free
Systems with a ♦3t-SD

This section presents a protocol (Figure 5.5) that solving the Multivalued Byzantine
Consensus problem in a signature-free system (without message authentication). This
protocol assumes an �3t-SD(3t outgoing eventually synchronous links and 3t incoming
eventually synchronous links) and it uses as primitive Reliable-Broadcast, which is very
similar to consistent unique broadcast and consistent broadcast . Note that �3t-SD is
equivalent to �3t-bisource in the case one the number of processes in the system is exactly
(n = 3t+ 1).

5.5.1 A Simple Reliable-Broadcast Algorithm

Figure 5.3 presents a simple algorithm that implementing reliable broadcast in an asyn-
chronous Byzantine system where t < n/3. This algorithm uses three message types
(init(), echo() and ready()) and two operation R_broadcast() and R_deliver(). When
a process pi invokes R_broadcast(vi), it broadcasts the message init(vi, i). When a process
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operation R_broadcast(vi)
(01) broadcast init(vi, i);

RB-delivery task from pj :
(02) wait until

(
init(v, j) delivered from pj or
echo(v, j) delivered from ((n + t)/2) different processes or
ready(v, j) delivered from ((n− 2t) different processes

)
;

(03) broadcast echo(v, j);
(04) wait until

(
echo(v, j) delivered from ((n + t)/2) different processes or
ready(v, j) delivered from ((n− 2t) different processes

)
;

(05) broadcast ready(v, j);
(06) wait until

(
ready(v, j) delivered from ((n− t) different processes

)
;

(07) R_deliver(v) at pi as the value R_broadcast by pj

Figure 5.3: A Simple Reliable-Broadcast Algorithm

pi has delivered a message init(v, j) from pj or from echo(v, j) from ((n+ t)/2) distinct
processes ready(v, j) from ((n − 2t) (Lines 01, 02), echo(v, j) (line 03). When pi has
delivered a message echo(v, j) delivered from ((n+t)/2) distinct processes or ready(v, j)
from ((n − 2t) distinct processes (Line 04),it broadcasts ready(v, j) (Line 05). then pi
waits until it has delivered the same message ready(v, j) from (n− t) distinct processes.
When this occurs it R_delivers value (v) as the value R_broadcast by pj (Lines 06, 07).
Reliable-broadcast ensures the following properties:

• No-duplicity property: no two correct processes R_deliver different messages from
any pj

• Termination property: if the sender is correct, all correct processes eventually R_deliver
its message.

• Uniformity property: if a correct process R_delivers a message from pj (possibly
faulty), then all correct R_deliver a message from pj

5.5.2 An extension of Reliable-Broadcast to get a weaker deliv-
ery

The algorithm of figure 5.4 presents an extension of Reliable-Broadcast presented in fig-
ure 5.3.The principle of this algorithm is similar to the precedent one except for the lines
06-07 that are replaced by lines 601-602. The intuition that is behind this modification
to get Weaker delivery propriety, denoted WR_deliver. When a process pi has delivered
the message ready(v, j) from (t + 1) distinct processes, it WR_delivers value v as the
value R_broadcasted by pj. This means that pi receives a message ready(v, j) from at
a least one correct process. The Reliable-broadcast with weaker delivery guarantees the
following properties:

• No-duplicity property: If a correct process pi WR_delivers a value v as the value
R_broadcasted by pk (possibly faulty) ,then a correct processpj will never WR_deliver
the message v of pk, pj WR_deliver the same value v or pj R_deliver same value v.
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(601) wait until
(

ready(v, j) delivered from (t + 1) different processes
)
;

(602) WR_deliver(v) at pi as the value R_broadcast by pj

Figure 5.4: An extension to reliable-broadcast to get a weaker delivery

• Termination property: if the sender is correct, all correct processes eventually WR_deliver
its message.

• Weak Uniformity property: if a correct process R_delivers a message from pj (possibly
faulty), then all correct WR_deliver a message from pj

We also define a timeliness propriety, to get eventually timely weaker delivery , as the
following:

• If pi is �3t-SD, then If a correct processes pj R_delivers a value v as the value
R_broadcasted by pk (possibly faulty), then pi will WR_deliver certainly the same
value v of pk in a bounded time.

5.5.3 Description of the proposed protocol

Figure 5.5 presents a protocol that solving the Multivalued Byzantine Consensus problem
in an asynchronous distributed system. The proposed protocol is a signature-free (does
not use authentication) and assumes an �3t-SD, it uses as subroutines Reliable-Broadcast
5.3 and Reliable-Broadcast with timely weaker delivery 5.3. Those subroutine abstracts
three operations: R_broadcast(). R_deliver() and WR_deliver().

Each process in the system executes consecutive asynchronous rounds and each round r
is coordinated by a predetermined process pc. Each round is composed by five phases.

First phase of a round r(lines 01-06). This phase aims to certify values

carried by messages. Each process pi manages a local variable esti which contains its
current estimate of the decision value. In this phase, a process pi uses Reliable-Broadcast
operations (R_broadcast() and R_deliver()) to R_brodacst cert(ri, esti) message. If pi
R_delivers cert(ri, est) message from at a least (n− t) distinct processes then it stores
values carried by those message in a set rec1i. A process p − i considers a value v to be
certified if it R_delivers v from at a least (n − 2t) distinct processes (at a least one is
correct). A processes pi considers also the value (⊥) as certified if the exist a set A ⊂ rec1i

with |A| ≥ (n − t) and 6 ∃v ∈ A such that #v(rec1i) ≥ n − 2t)}. This means that pi
certifies the value ⊥ if no value v appeared at least (n − 2t) times in rec1i. a process pi
stores the certified Values in a set valid1(rec1i) and sets its variable auxi to any value of
valid1(rec1i).

Second phase of a round r (lines 07-12). This phase guarantees that at its end, at most
one non ⊥ value can be kept in the aux variables. In other words, if pi and pj are correct
processes and if auxi 6= ⊥ and auxj 6= ⊥ then necessarily auxi = auxj, whatever is the
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behavior of the Byzantine processes.

In this phase, each process pi R_broadcasts R_broadcast filt(ri, auxi) message and waits
to R_deliver filt(ri, aux),with (aux ∈ valid1(rec1 − i)) from at least (n − t) distinct
processes

When pi _delivers these messages, the values of which are stored in a set rec2i. A pro-
cess pi considers v as a valid value, If rec2i contains a least (n − t) values for v. If no
value v appeared at least (n − t) times in rec2i, a process pi considers ⊥ as valid value.
Process pi stores the valid Values in a set valid2(rec2− i). At the end of this phase, pi up-
dates its auxi variable to any value of valid2(rec2i) and starts its timer on the coordinator.

Third phase of a round r (lines 13-23). This phase is the decision phase. In this phase,
a process pi R_broadcasts dec(ri, auxi).When pi R_delivers dec(ri, aux) message with
(aux ∈ valid2(rec2i)) from at a least (n − t) then it stores the values carried by these
messages in a set rec3i. and updates its auxi variable to any value of valid2(rec2i). If
the set rec3i contains at least (n− t) values for v 6= ⊥ then pi decides v and sets its esti
variable to v. If rec3i s contains at a least one value v 6= ⊥ then pi change its estimation
to v.Otherwise, pi the help of the coordinator is needed. This phase guarantees that the
Agreement property will never be violated, because if any correct process decides v during
the current round then if some processes do not decide in the same round, then v is the
only certified value for the next round. Note that not all processes decide necessarily
during the same round.

Forth phase of a round r (lines 24-30). This phase is the coordination phase. This phase
has no particular effect if the set rec3i of a correct process pi, contains more than one
non ⊥ value v. This means that pi has decided on v in the previous phase or its set rec3i

contains at a least one value v 6= ⊥. Its aim is to help processes that having theirs sets rec3
containing less than one non ⊥ value v to change their estimation to the coordinator value
if they receiving it . In this phase, the coordinator pc uses WR_deliver() operation defined
in the algorithm of figure 5.4. The coordinator pc waits to WR_deliver filt(ri, aux)
message, that are R_broadcasted by all processes at a line 07 ,with (aux ∈ valid1(rec1i)
from at least (n− t) distinct processes. When it WR_delivers the values carried by these
messages, then it stores them in a set reci Note that, all correct processes start their
timers at a line 12 when each of them R_delivers at a least (n − t) values carried by
filt(ri, aux) messages. This means that, these correct processes have a proof that the
coordinator will WR_deliver all values of the set rec2i.

If pc is a �3t-SD then it WR_delivers all value of the set rec2i with timely way. This
means that all values off reci are WR_delivred with timely way. Moreover, if the set reci
contains a value v 6= ⊥ more than (t+ 1) times then it keeps v in its local variable coordi,
else it sets coordi to its own estimation. After this, pc broadcasts coord(ri, coordi) mes-
sage. The coord(ri, coordi) message is broadcasted from another parallel task, because
the coordinator of round r could be stuck in previous rounds and if it does not respond
quickly, the processes waiting this message may time out. When the timer a correct pro-
cess pi times out while waiting the response from pc , ∆i[j] is incremented. Moreover, this
prevents pi from blocking while waiting for the response of a faulty coordinator. If the
current coordinator is a �3t-SD then it has at least 3t processes with which is connected
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by outgoing eventually timely links among which at least 2t are correct processes. Con-
sequently, at least (2t + 1) correct processes (the 2t correct privileged in-neighbors and
the coordinator itself) got the value v of the coordinator, carried by coord(ri, coord)
message, and thus set their variable coordi to the value of the coordinator coord . The
processes that not receive the coord(ri, coord) message set their variable coordi to ⊥ .

Fifth phase of a round r (lines 24-30). This phase is the relaying phase. This phase
has no particular effect if the coordinator is not a �3t-SD or is a Byzantine. Certainly,
if the current coordinator is a �3t-SD then at least (2t + 1) correct processes set their
variable coordi to the same value v 6= ⊥. During the fifth phase, all processes broadcast
relay(ri, coordi) message . This means that they relay the value v they got from the
coordinator or ⊥ if they timed out. Each process pi delivers relay(ri, coordi) message
from at a least (n− t) distinct processes (the values carried by these messages are stored
into a set rec4i). If the coordinator is a �3t-SD then any correct process will get (t + 1)
message (at least one from a correct processes) from the set of (2t+ 1) correct processes
that got the value of the coordinator because (n− t) + (2t+ 1) > n. If the coordinator is
not a �3t-SD or if it is Byzantine, some processes can receive only ⊥ values, others may
receive more than one value and some others can receive a unique value.

At the end of this phase, a process pi that asking for the help of the coordinator to a
value v 6= ⊥, if v appears at a least t+ 1 times in the set rec4i.

5.6 Conclusion
This chapter has presented Three protocols for solving Consensus in distributed systems
prone to Byzantine failures. First and second protocols use authentication and assume a
relaxed partially synchronous distributed system but where only 4t communication links
are eventually synchronous.These links connect the same process (2t incoming links and
2t outgoing links).Those protocols have very simple design principles. In favorable setting,
they can reach decision in only 6 communication steps and needs only Ω(n2) messages in
each step.

The third protocol is a signature-free protocols and assumes only 6t communication links
are eventually synchronous. These links connect the same process (3t incoming links and
3t outgoing links). In favorable setting, the proposed protocol can reach decision in 11
communication steps and needs Ω(n3) messages in each step.
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Consensus(vi)

Init: ri ← 0; ∆i ← 1; esti ← vi

Task T_Basic: % basic task %
repeat forever

(01) c← (ri mod n) + 1; ri ← ri + 1;
—————————————————- round ri ———————————————————–

(02) R_broadcast cert(ri, esti);
(03) let rec1i = multiset of values R_delivered to pi and carried by cert messages;
(04) wait until (|rec1i| ≥ n− t);
(05) let valid1(X) ≡ {x|#x(X) ≥ n− 2t} ∪ {⊥, if ∃A ⊂ X, |A| ≥ (n− t), 6 ∃v ∈ A|#v(X) ≥ n− 2t)};
(06) auxi ← any value v ∈ valid1(rec1i);

(07) R_broadcast filt(ri, auxi);
(08) let rec2i = multiset of values x R_delivered to pi and carried by filt messages with x ∈ valid1(rec1i);
(09) wait until (|rec2i| ≥ n− t);
(10) let valid2(X) ≡ {x|(#x(X) ≥ n− t)} ∪ {⊥, if ∃A ⊂ X, |A| ≥ (n− t), 6 ∃v ∈ A|#v(X) ≥ n− t)};
(11) auxi ← any value v ∈ valid2(rec2i);
(12) set_timer(∆i[c]);

(13) R_broadcast dec(ri, auxi);
(14) let rec3i = multiset of values x R_delivered to pi carried by dec messages with x ∈ valid2(rec2i);
(15) wait until (|rec3i| ≥ n− t);
(16) auxi ← any value v ∈ valid2(rec2i);
(17) case (∃v 6= ⊥,#v(rec3i) ≥ n− t) then decide(v); esti ← v;
(18) (∃v 6= ⊥,#v(rec3i) > 0) then esti ← v;
(19) otherwise % The help of the coordinator is needed %
(20) let rec4i = multiset of values delivered to pi and carried by relay messages;
(21) wait until (|rec4i| ≥ n− t);
(22) if (∃v 6= ⊥,#v(rec4i) ≥ t + 1)) then esti ← v endif;
(23) endcase;

————————————————————————————————————————–
end repeat

Task T_Coord[r]: % coordination task of round r %
(24) let reci = multiset of values x WR_delivered to pi carried by filt messages with x ∈ valid1(rec1i);
(25) wait until (|reci| ≥ n− t);
(26) if (∃v 6= ⊥,#v(reci) ≥ t + 1) then coordi ← v else coordi ← esti endif;
(27) broadcast coord(ri, coordi);

Task T_Relay[r]: % relay the value of the coordinator of round r %
(28) wait until (coord(ri, coord) delivered from pc or time-out)
(29) if (timer times out) then coordi ← ⊥; ∆i[c]← ∆i[c] + 1 else coordi ← coord; disable_timer; endif;
(30) broadcast relay(ri, coordi);

Figure 5.5: A Byzantine Consensus Protocol In Signature-Fee systems (assumes a �3t-SD)
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Chapter 6

Time-Free Authenticated Byzantine
Consensus

6.1 Introduction
This chapter presents a time-free deterministic solution to the Byzantine consensus prob-
lem. Moreover, we can see a difference with the timer-based approach. The time-free
approach in the authenticated Byzantine model needs twice more winning links compared
to the crash failures model whereas in the case of the timer-based approach we need four
times more timely links to tolerate t Byzantine faults compared to the t links needed
for crash failures. This can be explained by the query-response mechanism used by the
time-free approach.

6.2 Basic Computation Model and Consensus Prob-
lem

6.2.1 Asynchronous Distributed System with Byzantine Process

We consider a message-passing system consisting of a finite set Π of n (n > 1) processes,
namely, Π = {p1, . . . , pn}. A process executes steps (send a message, receive a message or
execute local computation). Value t denotes the maximum number of processes that can
exhibit a Byzantine behavior. A Byzantine process may behave in an arbitrary manner. It
can crash, fail to send or receive messages, send arbitrary messages, start in an arbitrary
state, send different values to different processes, perform arbitrary state transitions, etc.
A correct process is one that does not Byzantine. A faulty process is the one that is not
correct.

Processes communicate and synchronize with each other by sending and receiving mes-
sages over a network. The link from process p to process q is denoted p→ q. Every pair
of process is connected by two links p→ q and q → p. Links are assumed to be reliable:
they do not create, alter, duplicate or lose messages. There is no assumption about the
relative speed of processes or message transfer delays. We assume that an authentication
mechanism along with a public key infrastructure and a public key cryptography such
as RSA signatures are available. We assume that Byzantine processes cannot imperson-

41



ate other processes. Moreover, processes sign the messages they send. Consequently, a
Byzantine process cannot alter or modify a message it relays as it cannot forge the sig-
nature of the original sending process. In our authenticated Byzantine model, we assume
that Byzantine processes are not able to subvert the cryptographic primitives. To ensure
the message validity, each process has an underlying daemon that filters the messages it
receives. For example, the daemon will discard all duplicate messages (necessarily sent
by Byzantine processes as we assume reliable send and receive operations between correct
processes). The daemon, will also discard all messages that are not syntactically correct,
or that do not comply with the text of the protocol.

6.2.2 A Time-Free Assumption

Query-Response Mechanism In this chapter, we consider that each process is pro-
vided with a query-response mechanism. More specifically, any process p can broadcast a
QUERY () message and then wait for corresponding RESPONSE () messages from (n−t)
processes. Each of this RESPONSE () messages is a winning response for that query, and
the corresponding sender processes are the winning processes for that query. The others
responses received after the (n− t) RESPONSE () messages are the losing responses for
that query, and automatically discarded. A process issues a new query only when the
previous one has terminated (the first (n − t) responses received). Finally, the response
from a process to its own queries is assumed to always arrive among the first (n − t)
responses that is waiting for.

Henceforth, we define formally a winning link, an x- winning.

Definition 9. Let p and q be two processes. The link p→ q is eventually winning (denoted
�WL) if there is a time τ such that the response from p to each query issued by q after
τ is a winning response (τ is finite but unknown).

Definition 10. A process p is an x-winning at time τ if p is correct and there exists a set
X of processes of size x, such that: for any process q in X, the link p → q is winning.
The processes of X are said to be privileged neighbors of p.

Definition 11. A process p is an �x-winning if there is a time τ such that, for all τ ′ ≥ τ ,
p is an x-winning at τ ′.

For the rest of the chapter, we consider an asynchronous distributed system where the
only additional assumptions are those needed by the �x-winning.

6.2.3 The Consensus Problem

We consider the multivalued consensus problem, where there is no bound on the cardinal-
ity of the set of proposable values. In the multivalued consensus problem, every process
pi proposes a value v and all correct processes have to eventually decide on a single value
among the values proposed by the processes.

Formally, the consensus problem is defined by the following three properties:

Let us observe that, in a Byzantine failure context, the consensus definition should not
be too strong. For example, it is not possible to force a faulty process to decide the
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same value as the correct processes, since a Byzantine process can decide whatever it
wants. Similarly, it is not reasonable to decide any proposed value since a faulty process
can initially propose different values to distinct processes and consequently the notion of
“proposed value” may not be defined for Byzantine processes. Thus, in such a context,
the consensus problem is defined by the following three properties:

• Termination: Every correct process eventually decides.

• Agreement: No two correct processes decide different values.

• Validity: If all the correct processes propose the same value v, then only the value v
can be decided.

6.3 An Authenticated Byzantine Consensus Protocol
With �2t-winning

The proposed protocol (Figure 6.1) uses authentication and assumes an �2t-winning pro-
cess. Except the coordination phase at the beginning of each round, the principle of this
protocol is similar to one that has been presented in chapter 5 . This main difference is
due to the extra assumption that strengthens the basic purely asynchronous computing
model. The protocol of chapter 5 uses a timer-based assumption (it assumes an �2t-
bisource) whereas the present one uses a time-free assumption. Each process pi executes
the protocol given by Figure 6.1. It is composed of a main task ((T1)), a decision task
((T3)) the aim of which is to allow a process to stop participating in the protocol when
it decides. It implements some kind of reliable broadcast of the decision value (certified
value). T2[] is an array of tasks, each associated with a round r executed by process pi.
It is tasks T2 that implement the query-response mechanism of the coordination phase
as explained in the following. The proposed protocol uses authentication to reduce the
power of Byzantine processes. Indeed, a Byzantine process p can relay falsely a value it
has received from some process q. If process q signs its message and process p cannot
forge the signature of q then either p relays correctly the message of q or it does not
relay it at all (the signed message received by p from q is the certificate it has to append
to the message it uses to relay the message it received from q). In the latter p can still
lie by saying that it received no value from q. Now suppose that p has to send to all
processes the majority value it has received (the most frequent value among all the values
it has received). The certificate will consist of the set of signed message it has received.
By this mean any process can check whether the majority value sent by the process is
sound. Note that, this does not prevent some process p from cheating. For example, if a
Byzantine process p receives all of the sent messages (n messages, one from each process
of the system), it can build two sets of (n − t) messages that lead to two different most
frequent values and then sent each of these two values to different processes.

Each process pi manages a variable esti to store its estimate of the decision value. In
order to ensure the validity property, the protocol starts with an init phase (lines 01-01)
to initialize the variable esti. This phase consists of an all-to-all message exchange that
allows to initializes the local variable esti of a process pi to a value it has received at least
(n - 2t) times if any. Otherwise, esti is set to vi the value proposed by pi. In the case where
all correct processes propose the same value v, the only value that can be received at least
(n−2t) times is v and moreover any of (n− t) received messages contains at least (n−2t)
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times the value v. Consequently, all possible sets of (n − t) received messages certify
only v and no Byzantine process can introduce a wrong value as it will be discovered.
If not all correct processes do propose the same value, it may happen that among the
values received by a correct process p, no value is received (n − 2t) times or more. In
such a case, process p keeps the value it proposes and can use the set of (n − t) signed
messages it received as a certificate to justify why it kept its own value. After the init
phase, each process executes consecutive asynchronous rounds. Each round is composed
of four communication phases and is coordinated by a predetermined process.

First phase of a round r (lines 05-07). Each process that starts a round (including the
coordinator of the round) first sends its own estimate (with the associated certificate) to
all processes. In a separate task (line 20), Each time a process receives a valid QUERY
message (perhaps from itself) containing an estimate est, it sends a RESPONSE message
to the sender. If the process that responds to a query message is the coordinator of the
round to which is associated the query message, the value it sends in the RESPONSE
message is the coordination value. If the process that responds is not the coordinator, it
responds with any value as the role of such a message is only to define winning links. as
the reader can find it in line 19-22, the value sent by the coordinator is the value contained
in the first valid query message of the round it coordinates. In the main task at line 06,
a process pi waits for the response from pc (the coordinator of the round) or from (n− t)
responses from others processes. In the latter case, process pi is sure that pc is not the
right winning process as its response is not winning. If a process receives a response from
the coordinator then it keeps the value in a variable aux otherwise it sets aux to a default
value ⊥ (this value cannot be proposed).

RESPONSE(r, est) messages are sent by each process from another parallel task T2[r]
because the coordinator of round r could be stuck in previous rounds and if it does not
respond quickly, the sender on the QUERY message may receive (n − t) RESPONSE
messages from others processes. There is one task T per round. When the coordinator
receives the first valid QUERY message for a round it coordinates, it stores the included
estimate in a local variable c_esti. It is this value that the coordinator will send as all
RESPONSE messages to the query messages associated with this round that it will receive
(this allows a coordinator to coordinate a round with a certified value it has received even
if it is itself lying far behind). The others RESPONSE messages sent by the others
processes than the coordinator are only used to prevent processes from blocking while
waiting (line 06) for the response of a faulty coordinator and the values carried by these
messages are not used by processes.

If the current coordinator is a �2t-winning it has at least 2t privileged processes among
which at least t are correct processes. Consequently, at least (t + 1) correct processes
(the t correct processes and the coordinator itself) got the value v of the coordinator and
thus set their variable aux to v (v 6= ⊥). If the current coordinator is not a �2t-winning
process or if it is Byzantine, the three next phases allow correct processes to behave in
a consistent way. The aim of the first phase is that if the coordinator is an �2t-winning
process then at least (t+ 1) correct process will get its value at the end of line (01).

Second phase of a round r (lines 08-10).

At the end of the first phase, if the current coordinator is an �2t-winning process then at
least (t+ 1) correct processes set their variable auxi to the same non-⊥ value (the value

44



sent by the coordinator in RESPONSE messages). During the second phase, all correct
processes relay, at line 09, either the value they received from the coordinator (with its
certificate) or the default value ⊥ if they received (n − t) RESPONSE messages from
others processes. Each process collects (n − t) valid messages and stores the values in a
set Vi (line 09).

At line 09, if the coordinator is correct only one value is valid and can be relayed. More-
over, if the coordinator is a �2t-winning process then any correct process pi will get in its
set Vi at least one copy of the value of the coordinator as among the (t+ 1) copies sent by
the (t+1) correct processes that got the value of the coordinator a correct process cannot
miss more than t copies (recall that a correct process collect (n−t) valid messages). If the
coordinator is not an �2t-winning process or if it is Byzantine, this phase has no particular
effect. The aim of this second phase is that if the coordinator is an �2t-winning process
then all the correct processes will get its value.

Third phase of a round r (lines 11-13).

This phase is a filter; it ensures that at the end of this phase, at most one non-Û value
can be kept in the aux variables in the situations where the coordinator is Byzantine. If
the coordinator is correct, this is already the case. When the coordinator is Byzantine
two different correct processes may have set their auxi variables to different values. In
this phase, each

process collects (n − t) valid messages, the values of which are stored in a set Vi. If Vi
carries only the same value v (Vi = v) then v is kept in auxi otherwise auxi is set to ⊥.
At the end of this phase, there is at most one certified value v(v 6= ⊥). This phase has no
particular effect if the coordinator is correct. It ensures that eventhough the coordinator
is Byzantine, at most one value is kept in the aux variables.

Fourth phase of a round r (lines 14-17).

This phase ensures that the Agreement property will never be violated. This prevention is
done in the following way. If a correct process pi decides v during this round then if some
processes progress to the next round, then v is the only certified value. In this decision
phase, a process pi collects (n− t) valid messages and store the values in Vi. If the set Vi
of a process pi contains a unique non_⊥ value v, pi decides v. Indeed among the (n− t)
same values v received by pi, at least n − 2t have been sent by correct processes. As
(n − t) + (n − 2t) > n any set of (n − t) valid signed messages of this phase includes at
least one value v. Hence, all processes receive at least one value v (the other values could
be v or ⊥) and the only certified value for the next rounds is v. This means that during
the next round (if any) no coordinator (whether correct or Byzantine) can send a valid
value different from v.

If during the fourth phase, a process pi receives only ⊥ values, it is sure that no process
can decide during this round and thus it can keep the value it has already stored in esti
(the certificate composed of the (n− t) valid signed messages received during phase four
containing ⊥ values, allow pi to keep its previous values esti).

Before deciding (line 16), a process first sends to all other processes a signed message
DEC that contains the decision value (and the associated certificate). When a process pi
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receives a valid DEC message at line 23, it first relays is to all other processes and then
decides (not all processes decide necessarily during the same round).

6.4 Conclusion
This chapter presented a time-free deterministic protocol that solves authenticated Byzan-
tine Consensus in an asynchronous distributed system. The protocol assumes a weak
additional assumption on message pattern where at least 2t communication links are
eventually winning. These links connect the same correct process. In favorable setting,
the proposed protocol can reach decision in only 5 communication steps and needs only
Ω(n2) messages in each step.
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Function Consensus(vi)

Init: ri ← 0; ∆i[1..n]← 1;

Task T1: % basic task %
——————————————————- init phase ———————————————————–

(01) send init(vi) to all;
(02) wait until

(
init messages received from at least (n− t) distinct processes

)
;

(03) if
(
∃v : received at least (n− 2t) times

)
then esti ← v else esti ← vi endif;

repeat forever
(04) c← (rimodn) + 1; ri ← ri + 1;

—————————————————- round ri ———————————————————–
(05) send query(ri, esti) to all;
(06) wait until

(
response(ri, est) received from pc

)
or

(
response(ri, est) received from (n− t) distinct processes

)
;

(07) if response(ri, est) received from pc then auxi ← est else auxi ← ⊥;

(08) send relay(ri, auxi) to all;
(09) wait until

(
relay(ri, ∗) received from at least (n− t) distinct processes) store values in Vi;

(10) if (Vi − {⊥} = {v}) then auxi ← v else auxi ← ⊥ endif;

(11) send filt1(ri, auxi) to all;
(12) wait until

(
filt1(ri, ∗) received from at least (n− t) distinct processes) store values in Vi;

(13) if (Vi = {v}) then auxi ← v else auxi ← ⊥ endif;

(14) send filt2(ri, auxi) to all;
(15) wait until

(
filt2(ri, ∗) received from at least (n− t) distinct processes) store values in Vi;

(16) case (Vi = {v}) then send dec(v) to all; return(v);
(17) (Vi = {v,⊥}) then esti ← v;
(18) endcase;

————————————————————————————————————————–
end repeat

Task T2[r]: % Query-response coordination task - There is one such task per round r %
(19) c_esti ← ⊥
(20) upon receipt of query(r, est) from pj ;
(21) if pi is the coordinator of the round r and c_esti ← ⊥ then c_esti ← est;
(22) send response(ri, c_esti) to pj

Task T3:
(23) upon receipt of dec(est): send dec(est) to all; return(est);

Figure 6.1: An Authenticated Byzantine Consensus Protocol With �2t-Winning
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