EXERCISE 1

In a direct orthonormal coordinate system $(O ; \vec{i}, \vec{j}, \vec{k})$, consider the vectors:

$$
\vec{a}=-2 \vec{i}+3 \vec{j}+\alpha \vec{k} ; \vec{b}=6 \vec{i}-\beta \vec{j}+3 \vec{k} ; \vec{c}=\vec{i}+2 \vec{j}-3 \vec{k}
$$

Where α and β are constants to be determined.
1- For which values of α and β are the vectors \vec{a} and \vec{b} collinear?
2- Calculate the magnitudes of vectors \vec{a}, \vec{b}, and \vec{c}, as well as those of the combinations?

$$
(\vec{a}+\vec{b}),(\vec{a}-\vec{b}),(\vec{a}+\vec{c}) \text { And }(\vec{a}-\vec{c})
$$

3- Determine the components of the vector \vec{d} satisfying the vector relation: $2 \vec{a}+\vec{b} / 3-\vec{c}+\vec{d}=\overrightarrow{0}$ Deduce the unit vector \vec{u} carried by the vector \vec{d}

EXERCISE 2

In a Cartesian orthonormal coordinate system $(O ; \vec{i}, \vec{j}, \vec{k})$, We give the three points: $A(1,7) ; B(8,3)$ and $C\left(\frac{9}{2}, 1\right)$ forming the triangle $A B C$.

1- Determine the components and magnitudes of the vectors $\overrightarrow{A B}, \overrightarrow{A C}$, and $\overrightarrow{B C}$.
2- Express the value of the angle \hat{B} using the definition of the dot product

EXERCISE 3

Let there be three points $A(1,1,1), B(-1,3,1)$, and $C(1,6,-4)$ in an orthonormal Cartesian coordinate system, $(O ; \vec{i}, \vec{j}, \vec{k})$.

1- Determine the components and magnitudes of vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
2- Calculate the vector product of $\overrightarrow{A B} \wedge \overrightarrow{A C}$. Deduce the area of the triangle $A B C$ and the interior angle \hat{A} of this triangle.

EXERCISE 4

In an orthonormal coordinate system $(O ; \vec{i}, \vec{j}, \vec{k})$ we consider the vectors: $\vec{u}=\vec{i}-\vec{j}+2 \vec{k}$ and $\vec{v}=-\vec{i}-2 \vec{j}+\vec{k}$.

1- Give their norms, their scalar product, and the angle they form between them.
2- Calculate the projection of \vec{u} on \vec{v}.
3- Determine, in two different ways, a vector orthogonal to \vec{u} and $\overrightarrow{\boldsymbol{v}}$.

