EXERCISE 1

In a direct orthonormal coordinate system $(O; \vec{i}, \vec{j}, \vec{k})$, consider the vectors:

$$\vec{a} = -2\vec{i} + 3\vec{j} + \alpha \vec{k}$$
; $\vec{b} = 6\vec{i} - \beta \vec{j} + 3\vec{k}$; $\vec{c} = \vec{i} + 2\vec{j} - 3\vec{k}$

Where α and β are constants to be determined.

- 1- For which values of α and β are the vectors \vec{a} and \vec{b} collinear?
- 2- Calculate the magnitudes of vectors \vec{a} , \vec{b} , and \vec{c} , as well as those of the combinations?

 $\left(\vec{a}+\vec{b}\right), \left(\vec{a}-\vec{b}\right), \left(\vec{a}+\vec{c}\right)$ And $\left(\vec{a}-\vec{c}\right)$

3- Determine the components of the vector \vec{d} satisfying the vector relation: $2\vec{a} + \vec{b}/3 - \vec{c} + \vec{d} = \vec{0}$ Deduce the unit vector \vec{u} carried by the vector \vec{d}

EXERCISE 2

In a Cartesian orthonormal coordinate system $(O; \vec{i}, \vec{j}, \vec{k})$, We give the three points:

A(1,7); B(8,3) and $C\left(\frac{9}{2},1\right)$ forming the triangle ABC.

- 1- Determine the components and magnitudes of the vectors \overrightarrow{AB} , \overrightarrow{AC} , and \overrightarrow{BC} .
- 2- Express the value of the angle \hat{B} using the definition of the dot product

EXERCISE 3

Let there be three points A(1, 1, 1), B(-1, 3, 1), and C(1, 6, -4) in an orthonormal Cartesian coordinate system, $(O; \vec{i}, \vec{j}, \vec{k})$.

- 1- Determine the components and magnitudes of vectors \overrightarrow{AB} and \overrightarrow{AC} .
- 2- Calculate the vector product of $\overrightarrow{AB} \wedge \overrightarrow{AC}$. Deduce the area of the triangle ABC and the interior angle \hat{A} of this triangle.

EXERCISE 4

In an orthonormal coordinate system $(O; \vec{i}, \vec{j}, \vec{k})$ we consider the vectors: $\vec{u} = \vec{i} - \vec{j} + 2\vec{k}$ and $\vec{v} = -\vec{i} - 2\vec{j} + \vec{k}$.

- 1- Give their norms, their scalar product, and the angle they form between them.
- 2- Calculate the projection of \vec{u} on \vec{v} .
- 3- Determine, in two different ways, a vector orthogonal to \vec{u} and \vec{v} .