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Numerical Series
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Itroduction

In this series of tutorials, we will explore the fundamental concepts of Numerical
Series. Each exercise is designed to reinforce your understanding of the topics
discussed in class.
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Exercises

Exercise 1

Consider an arithmetic sequence defined by an initial term u1 = 5 and a common
difference of r = 3.

1. Derive a formula for the general term un of the sequence.
2. Determine the sum of the first 10 terms of the sequence.

Exercise 2

Let a geometric sequence be defined by v3 = 2 and a common ratio q = 0.5.
1. Find the expression for the general term vn.
2. Calculate the sum of the first 8 terms of the sequence.

Exercise 3

Analyze the convergence and properties of the following series:
1.
∑

(exp 1
n
− exp 1

n+1
).

2.
∑

xn−xn+1

(1−xn)(1−xn+1)
, for x ∈ ]−1, 1[.

3.
∑

ln(1− 1
n2 ).

4.
∑

1
1+2+3+...+n

.

5.
∑

ln(1− 1
2n
).

6.
∑

ln(1− 1
2n+1

).

7.
∑

n2+1
n2 .

8.
∑ (2n+1)4

(7n2+1)3
.

9.
∑

n sin
(
1
n

)
.

10.
∑

n
n3+1

.

11.
∑ √

n
n2+

√
n
.

12.
∑

1√
n
ln(1 + 1√

n
).



Exercises

Exercise 3 continued

13.
∑ (−1)n+n

n2+1
.

14.
∑

1
n!
.

15.
∑

(−1)n.

16.
∑ (−1)n

n
.

17.
∑ (−1)n

n2+1
.

18.
∑ (−1)n

n+1
.

19.
∑ (−1)n√

n
.

20.
∑

(−1)n sin( 1
n
).

21.
∑ (−1)n

lnn
.

22.
∑ (−1)n

lnn+(−1)n
.

23.
∑

sin(3−n).
24.

∑
ln( n2

n2+1
).

25.
∑√

n+ 1−
√
n.

26.
∑

(
√
n+ 1−

√
n)2.

27.
∑ 1×4×7×....×(3n−2)

3×6×9×....×3n
.

28.
∑

u2
n, where: un = 1×4×7×....×(3n−2)

3×6×9×....×3n
.

29.
∑ (2n)!

22n(n!)2
.

30.
∑(

1
2n

+ 5 1
3n

)
.

31.
∑ sin(nθ)

nα .

32.
∑

n≥1
cos(n)

n
.

33.
∑

n≥1(α + 1
n
)n where α ≥ 0.

34.
∑

n≥0(n
2 + 1)e−3n.

35.
∑

n≥2
1

(lnn)lnn .

36.
∑

( n
n+1

)n.

37.
∑

( n
(n+1)

)n
2
.

38.
∑

n!
nn .

39.
∑

ln( n2

n2+1
).

40.
∑

(
√
n+ 1−

√
n).

41.
∑

(
√
n+ 1−

√
n)2.

42.
∑

1√
n−1

− 2√
n
+ 1√

n+1
.

43.
∑

n≥1(α− 1
n
)n where α ≥ 0.

44.
∑

n≥1(ne
1
n − n).

45.
∑

1
n cos2 n

.

Exercise 4

1. Calculate the following limits as x approaches 0:
• sinx

x
.

• ln(1+x)
x

.
• x+sinx

x
.

• x+sinx
2x

.
2. Determine the nature of the following series with their general terms un:

• un = sin( 1
n
).

• un = ln(1 + 1
n2 ).

• un = 1 + n2 sin( 1
n2 ).

• un = 1√
n
+ sin( 1√

n
).



Exercises

Exercise 5

1. Evaluate the integral of the function 1
x lnx

over the interval x ≥ 2.
2. Determine the convergence or divergence of the infinite series with general

term un, where un = 1
n lnn

for all n ≥ 2.

Solutions

Solution to Exercise 1

1. Expression for the general term:
An arithmetic sequence follows the formula:

un = u1 + (n− 1)× r

Therefore, in this case:

un = 5 + (n− 1)× 3

un = 5 + 3n− 3 = 3n+ 2

2. Sum of the first 10 terms:
The sum of the first n terms of an arithmetic sequence is given by the formula:

Sn =
n

2
× (u1 + un)

For n = 10:

u10 = 3× 10 + 2 = 32

So, the sum of the first 10 terms is:

S10 =
10

2
× (5 + 32) = 5× 37 = 185.

Solution to Exercise 2

1. Expression for the general term:
A geometric sequence follows the formula:

vn = v3 × qn−3

Therefore, in this case:

vn = 2× (0.5)n−3

2. Sum of the first 8 terms:
The sum of the first n terms of a geometric sequence is given by the formula:

Sn = v3 ×
1− qn−3+1

1− q
for q ̸= 1

For n = 10:



Solutions

S10 = 2× 1− (0.5)10

1− 0.5

S10 = 2× 1− 0.0009765625

0.5

S10 = 3.99609376

Therefore, the sum of the first 10 terms is approximately 4.

Solution to Exercise 3

The nature of the series:
1. The first proposed series is clearly telescoping, with the partial sum given by:

n∑
k=1

(
exp

1

k
− exp

1

k + 1

)
= e− e

1
n+1 .

Thus,

lim
n→+∞

(
e− e

1
n+1

)
= e− 1,

which confirms the convergence of the series. Therefore, the sum is:

+∞∑
n=1

(
e

1
n − e

1
n+1

)
= e− 1.

2. We observe that:

xn − xn+1

(1− xn)(1− xn+1)
=

1

1− xn
− 1

1− xn+1
.

This shows that our series is telescoping, so we have:

n∑
k=1

(
1

1− xk
− 1

1− xk+1

)
=

1

1− x
− 1

1− xn+1
.

Taking the limit as n → +∞:

lim
n→+∞

(
1

1− x
− 1

1− xn+1

)
=

1

1− x
− 1,

which confirms the convergence of the series. Therefore, the sum is:

+∞∑
n=1

xn − xn+1

(1− xn)(1− xn+1)
=

1

1− x
− 1.

3. We have:

ln

(
1− 1

n2

)
= ln(n− 1) + ln(n+ 1)− 2 lnn,

so
n∑

k=1

(ln(k − 1) + ln(k + 1)− 2 ln k) = − ln 2 + ln

(
n+ 1

n

)
.



Solutions

solution to exercise 3 continued

Taking the limit as n → +∞:

lim
n→+∞

(
− ln 2 + ln

(
n+ 1

n

))
= − ln 2,

which confirms the convergence of the series. Therefore, the sum is:

+∞∑
n=1

ln

(
1− 1

n2

)
= − ln 2.

4. We know that:

1 + 2 + · · ·+ n =
n(n+ 1)

2
,

so
1

1 + 2 + · · ·+ n
=

2

n(n+ 1)
∼ 2

n2
.

Therefore,∑ 1

1 + 2 + · · ·+ n
,
∑ 2

n(n+ 1)
,
∑ 1

n(n+ 1)
, and

∑ 1

n2

all share the same convergence behavior. By conclusion, the series are conver-
gent.

5. The series ∑
ln

(
1

2n

)
and

∑
ln

(
1

n

)
have the same convergence behavior. We know that∑

ln

(
1

n

)
is a Riemann series with a = 1 ≤ 1, and thus it diverges.

6. The series ∑
ln

(
1

2n+ 1

)
and

∑
ln

(
1

2n

)
have the same convergence behavior. From the previous solution, we know
that

∑
ln
(

1
2n

)
diverges.

We also know that

lim
n→+∞

n2 + 1

n2
= 1 ̸= 0.

Thus, this is a divergent series.
8. We have:

(2n+ 1)4

(7n2 + 1)3
∼ 24

73n2
.

Since the general term behaves asymptotically like 24

73n2 , the series converges
by comparison with a convergent Riemann series where p = 2 > 1.



Solutions

solution to exercise 3 continued

9. We have

lim
n→∞

n sin

(
1

n

)
= 1

(recall that sinx ∼ x as x → 0). Since the general term does not tend to 0,
the series diverges.

10. We have

un ∼ n

n3
=

1

n2
.

By comparison with a convergent Riemann series (where p = 2 > 1), the series
converges.

11. The reasoning is the same: un ∼
√
n

n2 = 1
n3/2 and by comparison to a convergent

Riemann series, the series is convergent.
12. Since ln(1 + x) ∼ x as x → 0, we have

ln

(
1 +

1√
n

)
∼ 1√

n
as n → +∞.

Therefore,
1√
n
ln

(
1 +

1√
n

)
∼ 1

n
as n → +∞.

Since the series
∑

1
n
diverges (a divergent Riemann series), the given series

also diverges by comparison.
13. First Method: We have

(−1)n + n ∼ n and n2 + 1 ∼ n2 as n → +∞.

Therefore,
(−1)n + n

n2 + 1
∼ 1

n
.

By comparison with the harmonic series
∑

1
n
, which is divergent, we conclude

that the series
∑

un is divergent.
Second Method: We express the general term as

(−1)n + n

n2 + 1
=

(−1)n

n2 + 1
+

n

n2 + 1
.

Now, we analyze each term: -
∣∣∣ (−1)n

n2+1

∣∣∣ ∼ 1
n2 as n → +∞, - n

n2+1
∼

1
n

as n → +∞.
Since

∑
1
n2 is a convergent series and

∑
1
n
is a divergent harmonic series, we

conclude that the overall series is divergent, as the sum of a convergent and a
divergent series is divergent:

CV + DV = DV.
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solution to exercise 3 continued

14. We use D’Alembert’s Criterion (the ratio test), which states that for a
series

∑
un, if

lim
n→+∞

∣∣∣∣un+1

un

∣∣∣∣ = L,

then: - If L < 1, the series is convergent. - If L > 1, the series is divergent. -
If L = 1, the test is inconclusive.
Now, let’s apply this criterion to the given series. We compute the limit of the
ratio:

lim
n→+∞

un+1

un

= lim
n→+∞

1
(n+1)!

1
n!

= lim
n→+∞

n!

(n+ 1)!
= lim

n→+∞

n!

n!(n+ 1)
= 0.

15. For the series ∑
(−1)n,

we have
lim

n→+∞
un = lim

n→+∞
(−1)n = ±1 ̸= 0.

Since the general term does not tend to 0, the series is divergent by the
necessary condition for convergence. Therefore, it is a divergent series.

16. For the series ∑ (−1)n

n
,

we will apply Leibniz’s Rule for alternating series. According to Leibniz’s
criterion, if the terms of the series alternate in sign, are decreasing in absolute
value, and approach zero as n → ∞, the series converges.

- The general term is
∣∣∣ (−1)n

n

∣∣∣ = 1
n
, which is a decreasing sequence. - We also

have limn→+∞
1
n
= 0.

Since both conditions of Leibniz’s criterion are satisfied, the series∑ (−1)n

n

is convergent.
17. For the series ∑ (−1)n

n2 + 1
,

we have
1

(n+ 1)2
∼ 1

n2
as n → ∞.

Thus, the series ∑∣∣∣∣ (−1)n

n2 + 1

∣∣∣∣
is equivalent to the series ∑ 1

n2
,

which is a convergent series (since
∑

1
n2 is a convergent p-series with

p = 2 > 1). Since the absolute series converges, the original series∑ (−1)n

n2 + 1



Solutions

solution to exercise 3 continued

is absolutely convergent, and thus the series is convergent.
18. For the series ∑ (−1)n

n+ 1
,

we apply the same procedure as for
∑ (−1)n

n
. Specifically, we check if the

series satisfies the conditions of Leibniz’s Rule for alternating series.

- The general term
∣∣∣ (−1)n

n+1

∣∣∣ = 1
n+1

is a decreasing sequence. - We also have

limn→+∞
1

n+1
= 0.

Since both conditions are satisfied, by Leibniz’s Rule, the series∑ (−1)n

n+ 1

is convergent.
19. For the series ∑ (−1)n√

n
,

we apply the same procedure as for
∑ (−1)n

n
using Leibniz’s Rule for

alternating series.

- The general term
∣∣∣ (−1)n√

n

∣∣∣ = 1√
n
is a decreasing sequence because 1√

n
decreases

as n increases. - We also have limn→+∞
1√
n
= 0.

Since both conditions are satisfied, by Leibniz’s Rule, the series∑ (−1)n√
n

is convergent.
20. For the series ∑

(−1)n sin

(
1

n

)
,

we know that

sin

(
1

n

)
∼ 1

n
as n → ∞.

Thus, the series ∑
(−1)n sin

(
1

n

)
and ∑ (−1)n

n

are of the same nature. Since we know that the series∑ (−1)n

n

is convergent by Leibniz’s criterion for alternating series, it follows that the
series ∑

(−1)n sin

(
1

n

)
is also convergent.
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solution to exercise 3 continued

21. For the series ∑ (−1)n

lnn
,

we apply the same procedure as for
∑ (−1)n

n
, using Leibniz’s Rule for

alternating series.

- The general term
∣∣∣ (−1)n

lnn

∣∣∣ = 1
lnn

is a decreasing sequence because lnn increases

as n increases, so 1
lnn

decreases. - We also have limn→+∞
1

lnn
= 0.

Since both conditions are satisfied, by Leibniz’s Rule, the series∑ (−1)n

lnn

is convergent.
22. For the series ∑ (−1)n

lnn+ (−1)n
,

we first rewrite the general term as:

(−1)n

lnn+ (−1)n
=

(−1)n

lnn
· 1

1 + (−1)n

lnn

.

Next, we perform a Taylor expansion for 1

1+
(−1)n

lnn

. Using the expansion for

small x, we have:

1

1 + (−1)n

lnn

= 1− (−1)n

lnn
+

1

(lnn)2
+ o

(
1

(lnn)2

)
.

Thus, we get:

(−1)n

lnn
·
(
1− (−1)n

lnn
+

1

(lnn)2
+ o

(
1

(lnn)2

))
=

(−1)n

lnn
− 1

(lnn)2
+

(−1)n

(lnn)3
+ o

(
1

(lnn)3

)
.

We define:

un =
(−1)n

lnn
, vn =

(−1)n

(lnn)3
, wn =

(−1)n

(lnn)3
+ o

(
1

(lnn)3

)
.

- The series
∑

un and
∑

vn are convergent, as
∑

1
lnn

is an alternating series
and

∑
1

(lnn)3
is a convergent Bertrand series. - Since |wn| ∼ 1

(lnn)3
and the series∑

1
(lnn)3

is convergent, we conclude that the series
∑

wn is also convergent.
Therefore, the sum of these convergent series is convergent.

23. For the series ∑
sin(3−n),

we know that:

sin(3−n) ∼∞
1

3n
.
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solution to exercise 3 continued

The general term 1
3n

corresponds to the terms of a geometric series with the ratio
q = 1

3
< 1, which is known to converge. Therefore, the series

∑
sin(3−n) also

converges.
24. For the series ∑

ln

(
n2

n2 + 1

)
,

we have:

ln

(
n2

n2 + 1

)
= − ln

(
1 +

1

n2

)
∼∞ − 1

n2
.

Since the series
∑

1
n2 converges (it is a Riemann series with p > 1), it follows

that the series
∑

ln
(

n2

n2+1

)
also converges.

25. For the series ∑
(
√
n+ 1−

√
n),

we observe that this is a telescoping series. Specifically, we have:

N∑
n=1

(
√
n+ 1−

√
n) =

N∑
n=1

√
n+ 1−

N∑
n=1

√
n.

Simplifying the sums, we obtain:

√
N + 1−

√
1.

Since
√
N + 1 → ∞ as N → ∞, the series diverges.

26. We begin with the sum: ∑
(
√
n+ 1−

√
n)2

First, we expand the expression:

(
√
n+ 1−

√
n)2 =

1

(
√
n+ 1 +

√
n)2

For large n, we approximate this as:

1

(
√
n+ 1 +

√
n)2

∼ 1

4(n+ 1)

This is the general term of a divergent Riemann series. Hence, the sum∑
(
√
n+ 1−

√
n)2

also diverges.
27. We are given the condition:

lim
n→+∞

un+1

un

= 1,

so we apply Raabe-Duhamel’s test, which leads to the following expression:

lim
n→+∞

n

(
1− un+1

un

)
= β.
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solution to exercise 3 continued

1. First method: The sequence un is given by:

un =
1× 4× 7× · · · × (3n− 2)

3× 6× 9× · · · × 3n
.

We use the binomial expansion for (1 + x)α:

(1 + x)α = 1 + αx− α(α− 1)

2
x2 + · · ·+ α(α− 1) . . . (α− n+ 1)

n!
xn + o(xn).

Now, calculate the ratio:

un+1

un

=
3n+ 1

3n+ 3
=

(
1 +

1

3n

)(
1 +

1

n

)−1

.

Using the expansion for
(
1 + 1

n

)−1
, we get:

un+1

un

=

(
1 +

1

3n

)(
1− 1

n
+ o

(
1

n

))
= 1− 2

3n
+ o

(
1

n2

)
.

Thus, the series diverges (DV).
2. Second method: Applying Raabe-Duhamel’s test, we compute:

lim
n→+∞

n

(
1− 3n+ 1

3n+ 3

)
=

2

3
< 1.

This confirms that the series diverges as well.
28. We are given the condition:

lim
n→+∞

un+1

un

= 1,

so we apply Raabe-Duhamel’s test, which gives:

lim
n→+∞

n

(
1− un+1

un

)
= β.

(a) First method: Let vn = (un)
2. We compute the ratio:

vn+1

vn
= 1− 4

3n
+ o

(
1

n2

)
.

Since this ratio tends to 1, Raabe-Duhamel’s test confirms that the series
converges (CV).

(a) Second method: We compute:

lim
n→+∞

n

(
1−

(
3n+ 1

3n+ 3

)2
)

=
4

3
≥ 1.

Since this limit is greater than or equal to 1, it confirms that the series
converges.
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solution to exercise 3 continued

29. We are given that:

lim
n→+∞

un+1

un

= 1,

so we apply Raabe-Duhamel’s rule, which leads to the following expression:

lim
n→+∞

n

(
1− un+1

un

)
= β.

30. The given series is: ∑(
1

2n
+ 5

1

3n

)
We can examine this series by breaking it down into two distinct geometric
series: ∑(

1

2n
+ 5

1

3n

)
=
∑ 1

2n
+ 5

∑ 1

3n
.

Checking the convergence of each series

1. Series
∑

1
2n :

This is a geometric series with ratio r = 1
2
. A geometric series of the form∑∞

n=0 r
n converges if |r| < 1. In this case, r = 1

2
, which is less than 1, so the

series converges.
The sum of this geometric series is given by:

∞∑
n=0

1

2n
=

1

1− 1
2

= 2.

2. Series
∑

1
3n :

This is also a geometric series with ratio r = 1
3
. Since 1

3
< 1, the series also

converges.
The sum of this series is:

∞∑
n=0

1

3n
=

1

1− 1
3

=
3

2
.

Conclusion

Since both geometric series converge, the sum of these two series will also
converge. In fact, the sum of convergent series is convergent.
Therefore, the given series

∑(
1
2n

+ 5 1
3n

)
is convergent.
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solution to exercise 3 continued

Remark

For real series, we use the absolute value, while for complex series, we use the
modulus.
31. To study the convergence of the series

∞∑
n=1

sin(nθ)

nα
,

The Abel criterion states that a series of the form
∑

anbn converges if:
(a) an = 1

nα is a decreasing sequence tending to zero.
(b) To prove that the sequence of partial sums of bn = sin(nθ) is bounded,

consider the partial sum:

SN =
N∑

n=1

sin(nθ).

We will use a technique based on trigonometric series analysis and sum-
mation formulas for sines.

N∑
n=1

einθ =
N∑

n=1

(eiθ)n =
1− ei(N+1)θ

1− eiθ

=
e

i(N+1)θ
2

e
iθ
2

e
−i(N+1)θ

2 − e
i(N+1)θ

2

e−
iθ
2 − e

iθ
2

= e
iNθ
2
e

−i(N+1)θ
2 − e

i(N+1)θ
2

e−
iθ
2 − e

iθ
2

= e
iNθ
2

(
−2i sin( (N+1)θ

2
)

−2i sin( θ
2
)

)

So:

|SN | = |
N∑

n=1

Im(einθ)| =

∣∣∣∣∣e iNθ
2

(
−2i sin( (N+1)θ

2
)

−2i sin( θ
2
)

)∣∣∣∣∣
≤

∣∣∣∣∣ 1

sin( θ
2
)

∣∣∣∣∣
Since sin

(
θ
2

)
̸= 0 (in other words, θ is not a multiple of 2π), the term

1

|sin( θ
2)|

is a finite constant, and thus, the sequence of partial sums SN is

bounded.
Therefore, the sequence

∑N
n=1 sin(nθ) is bounded for any θ that is not a

multiple of 2π.
**Conclusion** By applying Abel’s criterion, we were able to establish
the convergence of our series.
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solution to exercise 3 continued

33.
∑

n≥1(α + 1
n
)n where α ≥ 0 :

We apply Cauchy’s criterion, obtaining:

lim
n→+∞

n
√
un = lim

n→+∞
n

√(
α +

1

n

)n

= α

From this, we conclude:
• If α > 1, the series diverges.
• If α < 1, the series converges.
• If α = 1, we cannot draw a conclusion directly.

For the case α = 1, we find:

lim
n→+∞

un = lim
n→+∞

(
1 +

1

n

)n

= lim
n→+∞

en ln(1+ 1
n) = lim

n→+∞
e

ln(1+ 1
n)

1
n = e ̸= 0

Thus, we conclude that the series converges only when α < 1.
34.

∑
n≥0(n

2 + 1)e−3n: We will use d’Alembert’s criterion, i.e.,

lim
n→+∞

un+1

un

= lim
n→+∞

((n+ 1)2 + 1)e−3(n+1)

(n2 + 1)e−3n
= e−3 < 1,

so the series converges.
35.

∑
n≥2

1
(lnn)lnn : We will use Riemann’s criterion, i.e.,

lim
n→+∞

n2un = lim
n→+∞

n2 1

(lnn)lnn
= lim

n→+∞
e
lnn2 1

(lnn)lnn = lim
n→+∞

e2 lnn−ln (lnn)lnn

= lim
n→+∞

e2 lnn−lnn ln (lnn) = lim
n→+∞

elnn(2−ln (lnn)) = 0,

so the series converges.
36.

∑
( n
n+1

)n:
We have:

lim
n→+∞

un = lim
n→+∞

(
n

n+ 1

)n

= e−1 ̸= 0,

so this is a series that diverges.
37.

∑
( n
n+1

)n
2
:

We observe that:

∑(
n

n+ 1

)n2

= e−n2 ln(1+ 1
n) ∼∞ e−n.

Thus,
∑(

n
n+1

)n2

and
∑

e−n are two series of the same nature. Additionally,∑
e−n is a geometric series with ratio 1

e
< 1, which is convergent. This proves

the convergence of
∑(

n
n+1

)n2

.

38.
∑

n!
nn :

We will use d’Alembert’s criterion, i.e.,

lim
n→+∞

un+1

un

= lim
n→+∞

(n+1)!
(n+1)n+1

n!
nn

= e−1 < 1,
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solution to exercise 3 continued

so the series converges.
39.

∑
ln( n2

n2+1
):

We have:

ln

(
n2

n2 + 1

)
= − ln

(
1 +

1

n2

)
∼∞ − 1

n2
,

which is the general term of a convergent series.
40.

∑
(
√
n+ 1−

√
n) :

It is a telescoping series, and we have:

N∑
n=1

(
√
n+ 1−

√
n) =

N∑
n=1

√
n+ 1−

N∑
n=1

√
n =

√
N + 1− 1 → +∞.

Since (
√
N + 1− 1)n is a divergent sequence, the series is also divergent.

41.
∑

(
√
n+ 1−

√
n)2:

We have:

(
√
n+ 1−

√
n)2 =

1

(
√
n+ 1 +

√
n)2

∼∞
1

4n
,

which is the general term of a divergent Riemann series. Therefore, the series∑
(
√
n+ 1−

√
n)2 is also divergent.

42.
∑

1√
n−1

− 2√
n
+ 1√

n+1
.

44.
∑

n≥1(ne
1
n − n):

We compute: ne
1
n −n = n(e

1
n − 1) = n(1+ 1

n
+O( 1

n
)− 1) = 1+O(1) → 1 ̸= 0,

which implies that the series is convergent.
45.

∑
1

n cos2 n
: We have: | 1

n cos2 n
| > 1

n
. This is a series with positive terms, all

greater than 1
n
, which corresponds to the general term of a divergent Riemann

series with a parameter less than 1. Therefore, the series diverges.

Correction to Exercise 4

1. We have:
a. limx→0

sinx
x

= 1.

b. limx→0
ln(1+x)

x
= 1.

c. limx→0
x+sinx

x
= 2.

d. limx→0
x+sinx

2x
= 1.

(a) Based on the previous question, we have:
i. sin

(
1
n

)
∼∞

1
n
so
∑

sin
(
1
n

)
and

∑
1
n
are of the same nature, and

since
∑

1
n
is divergent,

∑
sin
(
1
n

)
is also divergent.

ii. ln
(
1 + 1

n2

)
∼∞

1
n2 so

∑
ln
(
1 + 1

n2

)
and

∑
1
n2 are of the same nature,

and since
∑

1
n2 is convergent,

∑
ln
(
1 + 1

n2

)
is also convergent.

iii. limn→+∞ 1 + n2 sin 1
n2 = 2 ̸= 0 so

∑(
1 + n2 sin 1

n2

)
is grossly diver-

gent.

iv.
(

1√
n
+ sin 1√

n

)
∼∞

1
2
√
n
so
∑(

1√
n
+ sin 1√

n

)
and

∑
1

2
√
n
are of the

same nature, and since
∑

1
2
√
n
is divergent,

∑(
1√
n
+ sin 1√

n

)
is also

divergent.
is absolutely convergent, and thus the series is convergent.
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Correction to Exercise 5

1. To evaluate the integral of 1
x lnx

for x ≥ 2, we proceed as follows:∫ +∞

2

1

x lnx
dx.

We first compute the integral from x = 2 to an arbitrary upper bound x = t,
and then take the limit as t → +∞.

Step 1: Setting up the Integral

Consider the integral ∫ t

2

1

x lnx
dx.

To simplify this, let u = lnx, so that du = 1
x
dx. Substituting, we get:∫ t

2

1

x lnx
dx =

∫ ln t

ln 2

1

u
du.

Step 2: Integrate with respect to u

The integral of 1
u
with respect to u is ln |u|, so we have:∫ ln t

ln 2

1

u
du = [ln |u|]ln t

ln 2 = ln(ln t)− ln(ln 2).
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Step 3: Taking the Limit as t → +∞
To determine the behavior of the original improper integral, take the limit as
t → +∞: ∫ +∞

2

1

x lnx
dx = lim

t→+∞
(ln(ln t)− ln(ln 2)) .

As t → +∞, ln(ln t) → +∞. Therefore,∫ +∞

2

1

x lnx
dx = +∞.

Conclusion

Since the integral diverges, we conclude that∫ +∞

2

1

x lnx
dx = +∞.

Thus, the series diverges to infinity.
2. The nature of the series

∑
1

n lnn
:

Let f(x) = 1
x lnx

, which is a continuous, decreasing, and positive function, and
we have:

lim
x→∞

1

x lnx
= 0.

Thus,
∫ +∞
2

1
x lnx

dx and
∑

1
n lnn

are of the same nature. From the previous
question, we know that our series diverges.


