·-----

TD N°01

Exercice 1:

Pour un mélange binaire A et B, montrer que la fraction massique ω_A est reliée à la fraction molaire x_A par :

1.
$$\omega_A = \frac{x_A M_A}{x_A M_A + x_B M_B}$$

2.
$$d\omega_A = \frac{M_A M_B dx_A}{(x_A M_A + x_B M_B)^2}$$

Exercice 2:

La composition molaire du GNL commercial est :

- Méthane (CH₄) \rightarrow 94,9 %
- Ethane $(C_2H_6) \rightarrow 4.0 \%$
- Propane $(C_3H_8) \rightarrow 0.6 \%$
- Dioxyde de carbone (CO₂) \rightarrow 0,5 %

Déterminer :

- 1. La fraction molaire du méthane,
- 2. La masse molaire moyenne du mélange GNL,
- 3. La masse volumique du mélange gazeux lorsqu'il est à 193 K et sous une pression de 1,013 10⁵ Pa,
- 4. La pression partielle du méthane lorsque la pression totale est de 1,013 10⁵ Pa,
- 5. La fraction massique du propane en ppm (parts par million).

Exercice 3:

Soit un mélange binaire composé de A et B en mouvement tel que :

$$x_a = 1/6$$
; $u^* = 12$ cm/s; $u_a - u^* = 3$ cm/s; $M_a = 5M_b$

Calculer, dans le cas d'une diffusion unidirectionnelle, les quantités :

$$u_{h}$$
; $u_{h} - u^{*}$; u ; $u_{a} - u$; $u_{h} - u$

Travail à domicile :

Considérons le transfert de matière, en régime unidirectionnel, pour un mélange gazeux formé d'oxygène (A) et de gaz carbonique (B) à la température de 294 K et à la pression totale de 1,519.10⁵ Pa. Sachant que :

$$x_A = 0.4$$
; $u_A = 0.08$ m/s; $u_B = -0.02$ m/s.

Université de Batna 2

Faculté de Technologie L3GP Energétique

Département de Génie Industriel Module: Transfert de Matière

Calculer:

- 1. La masse molaire moyenne du mélange;
- 2. Les concentrations massiques de A et du mélange ;
- 3. La concentration du B;
- 4. Les vitesses de diffusion massique de A et molaire de B;
- 5. La densité du flux molaire de transport de A;
- 6. La densité de flux massique de B.

« Qui va doucement arrivera sûrement »

Département de Génie Industriel Module: Transfert de Matière

TD N°02

Exercice 1:

Montrer que dans un mélange binaire, la relation entre la densité de flux massique de diffusion de A et sa fraction molaire est donnée par:

$$\overline{j_A} = -\frac{C^2}{\rho} M_A M_B . D_{AB} \overline{\nabla x_A}$$

où ρ et C désignent, respectivement les concentrations massique et molaire totales.

Exercice 2:

On réalise un mélange liquide de benzène (C₆H₆) de volume V (masse volumique 880 kg/m³) et de nitrobenzène (C₆H₅NO₂) de même volume V (masse volumique 1200 kg/m³). En supposant qu'il n'y a pas de modification des volumes des constituants lorsqu'on réalise leur mélange, calculer la concentration molaire du benzène et la masse volumique du mélange.

Exercice 3:

Calculer le coefficient de diffusion de NH₃ dans l'azote à 353 K et 200 kPa. Comparer la valeur trouvée à celle expérimentale, $D_{AB} = 1,66.10^{-5} \text{ m}^2/\text{s}$ (Sherwood et al 1975). Les valeurs des paramètres de Lennard-Jones sont :

	σ _i (Å)	ε _i /k (K)
NH ₃	2,900	558,3
N_2	3,798	71,4

Exercice 4:

Evaluer le coefficient de diffusion du CO₂ dans l'air à 20°C et à pression atmosphérique. Comparer cette valeur avec celle donnée expérimentalement dans les tables. (Utiliser le tableau donnant les paramètres du potentiel de Lennard-Jones)

Département de Génie Industriel Module: Transfert de Matière

Travail à domicile

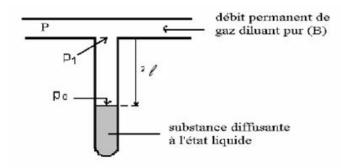
Calculer le coefficient de diffusion de l'ammoniac (A) dans l'azote (B) à 1 atm. et 30° C si l'on considère (d'après les tables) que D_{A-air} à 1 atm. et 0° C est égal à $0.98 \text{ cm}^2/\text{s}$ et D_{AC} (C:O) à 1 atm. et 20° C égal à $0.253 \text{ cm}^2/\text{s}$. On suppose que l'air se compose uniquement d'azote (79 %) et d'oxygène (21 %). On donne :

$$D_{Am} = \frac{1 - y_A}{\frac{y_B}{D_{AB}} + \frac{y_C}{D_{AC}}}$$

Pour le calcul des coefficients de diffusion des différents binaires, on a utilisé la relation de Fuller, valable pour les basses pressions.

$$D_{AB} = \frac{10^{-3} \cdot T^{1,75} \left[\frac{1}{M_A} + \frac{1}{M_B} \right]^{0,5}}{P(v_A^{1/3} + v_B^{1/3})^2}$$

vA, vB: volumes molaires partiels (supposés constants ici)


« Les cheveux gris sont les archives de passé »

Département de Génie Industriel Module: Transfert de Matière

TD N°03

Exercice 1:

La diffusivité d'un gaz (vapeur) dans un autre peut être mesurée à l'aide de la cellule de STEPHAN représentée ci-dessous dans un bain thermostaté.

La branche supérieure est parcourue par un débit constant, sous une pression totale P, de gaz diluant pur. L'abaissement du niveau liquide de la substance diffusante est repéré, en fonction du temps, au cathétomètre.

- a) Donner l'expression du flux molaire ϕ_A^* qui traverse la section du tube vertical en fonction du niveau ℓ , de la pression totale P et des pressions partielles p_1 et p_0 du soluté. Pour tenir compte de l'effet de bord causé par le raccordement des tubes en T, on considère que la longueur de diffusion est non pas ℓ mais ℓ - δ , δ ne dépendant que du débit de gaz diluant.
- b) Appeler v_1 le volume molaire de la substance diffusante à l'état liquide et exprimer la conservation de la matière en faisant un bilan infinitésimal dans le temps. En déduire une relation simple entre Δ et t/Δ , Δ représentant l'abaissement du niveau liquide entre t=0 (niveau l_0) et l'instant t (niveau l_0) qui permet, facilement, d'obtenir le coefficient de diffusion cherché.

A.N.: Pour la diffusion du pentane dans l'azote, on a obtenu les résultats suivants à T=31,4°C et P=770 mmHg :

tension de vapeur du pentane, $p_0 = 645$ mmHg.

Le débit d'azote (150 cm³/mn pour un tube de 10 mm) est suffisant pour que $p_1 \cong 0$.

$$\ell_0 = 2,75 \text{ cm}$$
 $v_1 = 117,05 \text{ cm}^3/\text{mol}$

c) Evaluer D_{AB}, coefficient de diffusion du pentane dans l'azote à 31,4°C et sous 770 mmHg et évaluer la correction d'effet de bord.

Les lectures au cathétomètre sont effectuées à 0,01 cm près. La correction d'effet de bord est-elle significative ?

On donne les résultats expérimentaux sous forme $\Delta l = f(t/\Delta l)$

Université de Batna 2

Faculté de Technologie L3GP Energétique

Département de Génie Industriel Module: Transfert de Matière

t (heures)	∆l (cm)	t/∆ℓ(h/cm)
5	3,28	1,524
12	5,94	2,02
25	9,39	2,66
40	12,41	3,22
60	15,66	3,83
80	18,42	4,34

20,85

Le régime est quasi-stationnaire et sans réaction chimique.

100

Exercice 3:

La diffusivité du CCl₄ à travers l'oxygène est déterminée à l'aide d'une cellule d'Arnold en régime quasi-stationnaire. La cellule ayant une section de 0,82 cm², fonctionne à 273 K et sous une pression de 755 mmHg. La couche de diffusion a une épaisseur initiale de 17,1 cm. Si 0,0208 cm³ de CCl₄ s'est évaporé en 10 heures, calculer la diffusivité de CCl₄ dans O₂.

4,79

On donne : pression de vapeur du CCl₄ à 273 K égale à 33 mmHg.

masse volumique du CCl₄ liquide ρ₁= 1,59 g/cm³

La concentration de CCl₄ est négligeable au sommet du tube.

Travail à domicile:

Retrouver l'équation de conservation de la masse pour un constituant d'un mélange dans un réacteur chimique ouvert, en utilisant un volume infinitésimal dx.dy.dz.

« On ne fait pas l'omelette sans casser d'œufs » Pr H.Madani