Faculty of Medicine
Pharmacy Department
Analytical Chemistry Module
2nd Year Pharmacy

October 2024

Tutorial N°1": Solutions/Solvents

EXERCISE 1:

Given the following solvents and their dielectric constant: Water (ϵ = 81), acetone (ϵ = 21), benzene (ϵ = 6), ethanol (ϵ = 24), carbon tetrachloride (ϵ = 2.2), methanol (ϵ = 32.6), butanoic acid (ϵ = 3), cyclohexanol (ϵ = 15), propanal (ϵ = 18.5).

- Rank these solvents in increasing order of dissociating power.
- Predict the appropriate solvent for the following solute: KCl.

EXERCISE 2:

A solution contains 75% of ethanol (C_2H_6O) by mass and the rest is water. a. What is the density of the solution if there is 15 mol of ethanol per liter of solution? b. To prepare a 3.5L of 2M ethanol, how many milliliters of the solution is needed?

EXERCISE 3:

Destop is an aqueous solution of sodium hydroxide (NaOH). Its label indicates it contains 20% soda, and its density is d = 1.23.

Given: M(NaOH) = 40.0 g/mol

Deduce the molar concentration of soda in this household product.

EXERCISE 4:

Hydrogen peroxide bottles found in pharmacies contain 3% by mass, used as a disinfectant. Pure hydrogen peroxide is a liquid containing only hydrogen peroxide molecules (H_2O_2).

a. Is the aqueous solution of hydrogen peroxide ionic or molecular?

You want to prepare a 3% hydrogen peroxide solution using 200 ml of water.

- b. What mass of water does this represent?
- c. What mass of pure hydrogen peroxide should be taken?

Given: ρ (water) = 1.0 g/ml

EXERCISE 5:

- 1. Calculate the ionic strength (I) of the solution obtained by mixing equal volumes of a 0.250 M sodium chloride solution and a 0.300 M barium chloride solution.
- 2. Calculate the activity coefficient of the chloride ion in $MgCl_2$ (10^{-3} mol/L) and in $LaCl_3$ at the same concentration. What can you conclude from this?

EXERCISE 6:

Calculate ionic strength of a solution containing $0.0750~M~K_2SO_4$, $0.0085~M~Na_3PO_4$, and $0.0150~M~MgCl_2$ is 0.3975~M.