Faculté de médecine Département de Pharmacie Module de chimie analytique 2^{éme} année Pharmacie 2022/2023

TD N° 5: Réactions de Complexation

Exercice 1:

- 1-Donner la réaction de formation et la formule chimique des complexes suivants. Préciser la charge du complexe formé :
- A- Tétraamminecuivre (II).
- B- Hexacyanoferrate (III).
- C- Hexacyanoferrate (II).
- D-Tétraiodomercurate (II).
- E- Hexaaqua Nickel (II).
- 2- Donner la formule chimique des complexes suivants :
- F- ion dichlorotetraaguachrome (III)
- G- ion tetrahydroxoadiaquaaluminate (III)

Exercice 2:

Donner la dénomination des complexes suivants selon l'IUPAC :

- K₂ [NiF₆]
- [Cu (NH₃)₄]²⁺
- [AI (H₂O)₆]³⁺
- [Fe(H₂O)₅OH]²⁺
- [Hg (CN)₄]²⁻
- [FeSCN]²⁺
- [Co (NO₂) (NH₃)₃]²⁺
- [CrCl₂(H₂O)₄] +

Exercice 3:

Quelles réactions se produisent lorsqu'on met en présence :

[LiY]
$$^{3-}$$
 + Ca²⁺; [Hg (SCN) $_2$] + Fe³⁺; [FeF] $^{2+}$ + SCN $^{-}$ [BaY] $^{2-}$ + Ca²⁺; [FeF] $^{2+}$ + Al $^{3+}$; [FeF] $^{2+}$ + Y⁴⁻

On donne les constantes de dissociation (pKd ou pKc) des complexes suivants :

$$[LiY]^{3-} = 2.8$$
; $[CaY]^{2-} = 10.7$; $[Hg (SCN)2] / [Hg (SCN)]^{+} = 9$; $[Fe (SCN)]^{2+} = 2.1$

$$[FeF]^{2+} = 5.5$$
; $[BaY]^{2-} = 7.8$; $[AIF]^{2+} = 6.1$; $[FeY]^{-} = 25$

Exercice 4:

Un mélange contient 0,01 mol d'ions Ba²⁺ et 0,01 mol d'ions Fe³⁺ et 0,0050 mol d'ions Y⁴⁻ par litre (ion Ethylène Diamine Tétra Acétique). Déterminer la concentration molaire des différentes espèces à l'équilibre.

pKd
$$[BaY^{2-}] = 7.8$$
 pKd $[FeY^{-}] = 25$

Exercice 5:

L'ion EDTA (Y^{4-}) donne des complexes avec les ions Mg^{2+} et Ca^{2+} . Ces complexes ont pour formules MgY^{2-} et CaY^{2-} . A 10 ml de solution contenant le complexe MgY^{2-} a la concentration de 0.20 mol/l On ajoute 10 ml de solution de chlorure de calcium de concentration 0.20 mol/l

Déterminer la concentration molaire des différentes espèces à l'équilibre

$$K_f$$
 (CaY²⁻) =10^{10.6} K_f (MgY²⁻) =10 ^{8.7}

Exercice 6:

A un litre d'une solution 0.1 molaire en MgY $^{2-}$, on ajout 10^{-3} mole de BaY $^{2-}$ Calculer Y $^{4-}$, pBa $^{2+}$ et pMg $^{2+}$

Données: pKd [BaY
$$^{2-}$$
] =7.8 ; pKd [MgY $^{2-}$] =8.7

Exercice 7:

1-A une solution de FeCl₃ 10^{-3} M, on ajoute 1 M de sulfocyanure d'ammonium NH₄SCN. Il se forme le complexe Fe(SCN) $^{2+}$, de couleur rouge vif et de constante de formation $K_f = 10^2$

- a. Calculer la concentration de ce complexe en solution
- b. On ajoute ensuite de NaF. Il se forme un autre complexe incolore FeF²⁺ (Kd =3,2.10⁻⁶).

On admet que la coloration rouge disparait lorsqu'il ne reste dans la solution que 10⁻⁶ M de Fe(SCN)²⁺ Calculer la masse minimale de NaF qu'il faut ajouter pour faire disparaitre cette coloration (On néglige la variation du volume de la solution pendant les différentes additions)

Données: M(NaF) = 42 g/mol

2- Dans une solution molaire d'hexacyanoferrate (II) de potassium, la concentration en ions CN⁻ libres est égale à 6,7.10⁻⁶ mol/l. calculer la constante de dissociation Kd de l'ion complexe.