Chapitre 1

Les équations de Sturm-Liouville

1.1. Introduction

Soit I un intervalle de \mathbb{R} non vide, et soient p, q etr des fonctions réelles et continues définies de I à valeurs dans \mathbb{R} . On va s'intéresser aux solutions réelles (ou complexes) des deux équations différentielles linéaires et affine :

$$y''(x) + p(x)y'(x) + q(x)y(x) = 0$$
 (E)

$$y''(x) + p(x)y'(x) + q(x)y(x) = r(x)$$
 (F)

On désigne par V (resp W) l'espace vectoriel des solutions réelles (resp complexes) de (E) (et donc on note le corps $K = \mathbb{R}$ ou \mathbb{C}). Si on ne précise pas le corps de base, on note X l'ensemble des solutions de (E), ainsi X = V si $K = \mathbb{R}$ et X = W si $K = \mathbb{C}$. On mentionne que les deux équations différentielles (??) et (??) sont souvent nommés : "les équations de Sturm-Liouville."

THÉORÈME 1.1.1. On a les assertions suivantes :

(1) $\forall x_0 \in I, \forall (a_0, a_1) \in K^2$, (E) ou (F) admet une solution unique maximale définie sur I tout entier, à valeurs dans K, tels que :

$$y(x_0) = a_0, y'(x_0) = a_1$$

(2) Les solutions de (E) forment un espace vectoriel X de dimension deux sur K; dont une base (canonique à x_0 fixé) est : $(y_1(\cdot), y_2(\cdot))$ avec :

$$\begin{cases} y_1(x_0) = 1\\ y'_1(x_0) = 0 \end{cases}$$
 (1)

et

$$\begin{cases} y_2(x_0) = 0\\ y'_2(x_0) = 1 \end{cases}$$
 (2)

avec $y_1(\cdot), y_2(\cdot)$ sont à valeurs réelles. (D'où toute autre solution de (E) est une combinaison linéaire de $(y_1(\cdot), y_2(\cdot))$).

(3) Si $(u(\cdot), v(\cdot)) \in X$, leur Wronksien:

$$w(x) = u(x)v'(x) - v(x)u'(x)$$
(3)

ne s'annule jamais ou s'annule toujours, $w(x) \neq 0 \Leftrightarrow (u(\cdot), v(\cdot))$ est une base de X.

- **(4)** Si $y(\cdot) \in X$ et $y(\cdot)$ n'est pas identiquement nulle, alors les zéros éventuels de $y(\cdot)$ sont simples et isolés dans I.
- (5) (Lemme des pentes): Si $x_0 < x_1$ deux zéro successives de $y(\cdot) \in V$ et $si \ y(x) > 0, \forall x \in]x_0, x_1[$ alors on a:

$$y'(x_0) > 0, \quad y'(x_1) < 0$$
 (4)

(6) La solution générale de (F) est la solution générale de (E) augmentée d'une solution particulière de (F). Précisément ou la formule de variation de la constante de Lagrange, où $y(\cdot)$ désigne une solution de (F), $y_1(\cdot)$ et $y_2(\cdot)$ sont comme dans la deuxième assertion et

$$w(x) = y_1(x)y_2'(x) - y_2(x)y_1'(x)$$
(5)

$$y(x) = y(x_0)y_1(x_0) + y'(x_0)y_2(x_0) + \int_{x_0}^x \frac{r(s)[y_1(s)y_2(x) - y_1(x)y_2(s)]}{w(s)} ds$$
(6)

- (7) Si $p(\cdot)$ et $q(\cdot)$ sont des fonctions constantes et si λ_1, λ_2 les racines de "l'équation caractéristique " $\lambda^2 + p\lambda + q = 0$, alors :
 - (7.1) Si λ_1, λ_2 sont réelles distinctes, alors $(e^{\lambda_1 x}, e^{\lambda_2 x})$ est une base de X.
 - (7.) Si $\lambda_1 = \lambda_2$, alors $(e^{\lambda_1 x}, xe^{\lambda_1 x})$ est une base de X.
 - (7.3) Si $\lambda_1 = a + ib$, $\lambda_2 = a ib$, $b \neq 0$, alors $(e^{ax} \cos bx, e^{ax} \sin bx)$ est une base de V.

REMARQUE 1.1.2. Dans ce théorème, on voit qu'on ne dispose pas en générale d'aucune formule explicite pour résoudre (E) ou (F), à l'exception du point 7) pour lequel $p(\cdot)$ et $q(\cdot)$ sont des constantes. L'objectif de ce cours est de faire une étude qualitative sur les trois points suivants dans l'étude de (E) ou (F):

- (a) Zéros des solutions,
- (b) Développement en série entière des solutions,
- (c) Stabilité des solutions.

1.2. Zéros des solutions de (E)

Les deux outils principales seront le passage en coordonnées polaires et le principe de Sturm. Il nous faut d'abord le lemme suivant :

Soient $y_1(\cdot), y_2(\cdot)$ de classe C^1 sur $[a, +\infty[, a \in \mathbb{R} \text{ à valeurs dans } \mathbb{R} \text{ deux solutions de } (E)$, sans zéro commun et soit $w(x) = y_1(x)y_2'(x) - y_2(x)y_1'(x)$ leur Wronksien. Si :

$$y_1(a) + iy_2(a) = r_0 e^{i\theta_0}$$
 (7)

Alors, on peut écrire :

$$y_1(x) = r(x)\cos\theta(x), y_2(x) = r(x)\sin\theta(x) \tag{8}$$

où $r(\cdot)$ et $\theta\cdot$) sont de classe C^1 sur $[a,+\infty[$ à valeurs dans $\mathbb R$ et sont données par les formules :

$$r(x) = \sqrt{y_1^2(x) + y_2^2(x)} \tag{9}$$

$$\theta(x) = \theta_0 + \int_a^x \frac{w(s)}{r^2(s)} ds \tag{10}$$

Preuve : Posons $\varphi(x) = y_1(x) + iy_2(x) \neq 0$ et $\psi(x) = \int_a^x \frac{\varphi'(s)}{\varphi(s)} ds + \log r_0 + i\theta_0$. On voit que

$$(\varphi(x)e^{-\psi(x)})' = \varphi'(x)e^{-\psi(x)} - \varphi(x)\psi'(x)e^{-\psi(x)}$$

$$= [\varphi'(x) - \varphi(x)\psi'(x)]e^{-\psi(x)}$$

$$= [\varphi'(x) - \varphi(x)\frac{\varphi'(x)}{\varphi(x)}]e^{-\psi(x)}$$

$$= 0$$

où $\psi'(x) = \frac{\varphi'(x)}{\varphi(x)}$. Il vient que

$$\varphi(x)e^{-\psi(x)} = \varphi(a)e^{-\psi(a)}$$
$$= r_0e^{i\theta_0} \cdot r_0^{-1}e^{-i\theta_0}$$

d'où $\varphi(x)=e^{\psi(x)}$, c'est à dire : $y_1+iy_2=e^{\psi}=re^{i\theta}$ où $r=\sqrt{y_1^2+y_2^2}$ et $\theta=Im(\psi)$ Or :

$$\psi(x) = \log r_0 + i\theta_0 + \int_a^x \frac{y_1'(s) + iy_2'(s)}{y_1(s) + iy_2(s)} ds$$
$$= \log r_0 + i\theta_0 + \int_a^x \frac{[y_1'(s) + iy_2'(s)][y_1(s) - iy_2(s)]}{r^2(s)} ds$$

d'où

$$\theta(x) = \theta_0 + \int_a^x \frac{y_1(s)y_2'(s) - y_2(s)y_1'(s)}{r^2(s)} ds$$

c'est à dire

$$\theta(x) = \theta_0 + \int_a^x \frac{w(s)}{r^2(s)} ds$$

REMARQUE 1.2.1. L'utilité du passage en coordonnées polaires est illustrée par le théorème suivant :

Théorème 1.2.2. Soit $a \in \mathbb{R}$, $q(\cdot)$ une fonction de classe C^1 sur $[a, +\infty[$ à valeurs dans \mathbb{R} avec $q(x) > 0, \forall x \geqslant a$. Supposons que

$$\int_{a}^{+\infty} \sqrt{q(s)} ds = +\infty \tag{11}$$

et

$$q'(x) = 0(q^{\frac{3}{2}}(x)) \quad quand \quad x \longrightarrow +\infty$$
 (12)

Soit $y(\cdot)$ une solution réelle non nulle de y''(x) + q(x)y(x) = 0 sur $[a, +\infty[$, et soit N(x) le nombre de zéros de $y(\cdot)$ sur [a,x]. Alors :

$$N(x) \sim \frac{1}{\pi} \int_{a}^{x} \sqrt{q(s)} ds \ quand \ x \longrightarrow +\infty$$
 (13)

Preuve: Tout d'abord on va faire un changement de variable en posant

$$\tau(x) = \int_{a}^{x} \sqrt{q(s)} ds.$$

D'après (11) et (12), on peut déduire que $\tau(\cdot)$ est une bijection croissante de classe C^1 de $[a, +\infty[$ sur $[0, +\infty[$, $\tau^{-1}(\cdot)$ est aussi bijection croissante de classe C^1 de $[0, +\infty[$ sur $[a, +\infty[$. Posons $Y = y \circ \tau^{-1}$ ou encore $y = Y \circ \tau$ (c'est à dire $y(x) = Y(\tau(x))$). Si on prend comme nouvelle variable $t = \tau(x)$ et comme nouvelle fonction inconnue $Y(\cdot)$, on voit que :

$$y'(x) = \tau'(x)Y'(\tau(x)) = \sqrt{q(x)}Y'(\tau(x))$$

$$y''(x) = \tau''(x)Y'(\tau(x)) + (\tau(x))^{2}Y'(\tau(x))$$

$$= \frac{q'(x)}{2\sqrt{q(x)}}Y'(\tau(x)) + q(x)Y''(\tau(x))$$

Il vient que:

$$y"(x) + q(x)y(x) = q(x)Y"(\tau(x)) + \frac{q'(x)}{2\sqrt{q(x)}}Y'(\tau(x)) + q(x)Y(\tau(x)) = 0$$

Posons donc:

$$\varphi(t) = \frac{q'(x)}{2q^{\frac{3}{2}}(x)} \ pour \ t = \tau(x)$$
 (14)

c'est à dire

$$Y''(t) + \varphi(t)Y'(t) + Y(t) = 0 \text{ si } t \ge 0$$
 (15)

Qu'est ce qu'on a gagné dans (15)? maintenant $Y(\cdot)$ est de coefficient 1 (mais on a perdu à cause de l'apparition du terme $\varphi(\cdot)Y'(\cdot)$). Mais on a gagné plus qu'on a perdu car (11) implique que $\varphi(t) \longrightarrow 0$ quand $t \longrightarrow \infty$. D'où tout va se dérouler comme si on avait l'équation

$$Y''(t) + Y(t) = 0$$

.

La deuxième étape consiste de passer en coordonnées polaires pour appliquer le lemme1 précédent. On peut écrire :

$$\begin{cases} Y(t) = r(t)\sin\theta(t) \\ Y'(t) = r(t)\cos\theta(t) \end{cases}$$
 (16)

Où $r, \theta \in C^1([0, +\infty[; \mathbb{R}).$

On voit que $Y(\cdot)$ et $Y'(\cdot)$ n'ont pas de zéros communs, car sinon l'unicité de solution de l'équation (15) implique que $Y \equiv 0$ et donc $y \equiv 0$. En dérivant et en utilisant l'équation (15), on obtient le système :

$$\left\{ \begin{array}{ll} Y'(t) &= r'(t)\sin\theta(t) + r(t)\theta'(t)\cos\theta(t) = r(t)\cos\theta(t) \\ Y"(t) &= r'(t)\cos\theta(t) - r(t)\theta'(t)\sin\theta(t) = -\phi(t)Y'(t) - Y(t) \\ &= -\phi(t)r(t)\cos\theta(t) - r(t)\sin\theta(t) \end{array} \right.$$

Multipliant la 1^{re} équation par $\cos \theta(t)$ et la 2^{me} par $-\sin \theta(t)$ et ajoutant, on trouve :

$$r(t)\theta'(t) = r(t) + \varphi(t)r(t)\sin\theta(t)\cos\theta(t)$$

D'où:

$$\theta'(t) = 1 + \varphi(t)\sin\theta(t)\cos\theta(t)$$

(on a utilisé : $\cos 2\alpha = 2\cos \alpha \sin \alpha$ alors $\cos \alpha \sin \alpha = \frac{1}{2}\cos 2\alpha$.)

Il vient que

$$|\theta'(t) - 1| \leqslant \frac{1}{2} |\varphi(t)|$$

Or que $\varphi(t) \longrightarrow 0$ quand $t \longrightarrow +\infty$, on aura :

$$\theta'(t) \longrightarrow 1 \quad quand \quad t \longrightarrow +\infty$$
 (17)

Donc

$$\theta(t) \sim t$$
 quand $t \longrightarrow +\infty$

Soit M(t) le nombre des zéros de $Y(\cdot)$ sur [0,t] (c'est à dire $Y(t)=r(t)\sin\theta(t)=0$), d'où $\sin\theta(t)=0$), donc on veut prouver que :

$$M(t) \sim \frac{t}{\pi} \quad quand \quad t \longrightarrow +\infty$$
 (18)

Soit $t_0 \ge 0$ tel que $t \ge t_0 \Longrightarrow \theta'(t) > 0$, alors (16) implique que :

$$M(t) \sim card\{s \in [t_0, t] : \sin \theta(t) = 0\}$$

$$= card\{l \in [\theta(t_0), \theta(t)] : \sin l = 0\}$$

$$\sim \frac{\theta(t)}{\pi} \sim \frac{t}{\pi}$$

 $\sin l=0\Longrightarrow l=k\pi,\quad k\in\mathbb{Z}$ (ici on a utilisé (17)), d'où (18) est prouvée.

Pour finir, on va démontrer que :

$$N(x) = M(\tau(x)) \tag{19}$$

En effet:

$$M(\tau(x)) = card\{t \in [0, \tau(x)] : Y(t) = 0\}$$

= $card\{s \in [a, x] : Y(\tau(s)) = 0\}$
= $card\{s \in [a, x] : y(s) = 0\}$
= $N(x)$

Vu la définition de $\tau(x)$, (18) et (19) achèvent la preuve de ce théorème.

REMARQUE 1.2.3. L'hypothèse $q'(x) = 0(q^{\frac{3}{2}}(x))$ n'est pas aussi artificielle qu'il peut paraître, comme le montre l'exemple suivant :

Exemple 1.

Soit a = 1, $q(x) = \frac{1}{4x^2}$, et considérons l'équation différentielle

$$y''(x) + \frac{1}{4x^2}y(x) = 0$$

et soit $y(\cdot)$ une solution sur $[1, +\infty[$.

On voit que:

$$\int_{1}^{+\infty} \sqrt{q(s)} ds = \lim_{x \to +\infty} \int_{1}^{x} \sqrt{q(s)} ds$$

$$= \lim_{x \to +\infty} \int_{1}^{x} \frac{1}{2s} ds$$

$$= \lim_{x \to +\infty} \left(\frac{1}{2} lnx - \frac{1}{2} ln1\right)$$

$$= +\infty$$

mais

$$q'(x)q^{\frac{-3}{2}}(x) = \frac{-1}{2x^3}8x^3 = -4$$

et justement la solution générale de l'équation d'Euler

$$y''(x) + \frac{1}{4x^2}y(x) = 0$$

est donnée par :

$$y(x) = \sqrt{x}(a + b\log x)$$

qui admet au plus un zéros sur $[1, +\infty[$.

Exercice 1.

Considérons l'équation différentielle

$$y''(x) + e^{x^2}y(x) = 0$$
 (E')

Soit $y(\cdot)$ une solution réelle non nulle de (E') et soit (x_n) le nombre de ses zéros positifs en ordre croissant.

• Montrer que $x_n \sim \sqrt{2 \log n}$ quand $n \longrightarrow +\infty$

Solution:

Posons $q(x) = e^{x^2}$ et soit a = 0. On montre que les hypothèses du théorème des zéros (1.2.2) sont vérifiees clairement.

Il vient que le nombre des zéros de la solution $y(\cdot)$, est donnée par :

$$N(x) \sim \frac{1}{\pi} \int_{a}^{x} \sqrt{q(s)} ds = \frac{1}{\pi} \int_{0}^{x} e^{\frac{s^{2}}{2}} ds$$
 quand $x \longrightarrow +\infty$

On a:

$$\int_0^x e^{\frac{t^2}{2}} dt \sim \frac{1}{x} e^{\frac{t^2}{2}} \quad quand \quad x \longrightarrow +\infty$$

car on a:

$$\int_0^x e^{\frac{t^2}{2}} dt \sim \int_1^x e^{\frac{t^2}{2}} dt = \int_1^x \frac{1}{t} t e^{\frac{t^2}{2}} dt$$
$$= \left[\frac{1}{t} t e^{\frac{t^2}{2}} \right]_1^x + \int_1^x \frac{1}{t^2} e^{\frac{t^2}{2}} dt$$

D'où

$$\int_{1}^{x} e^{\frac{t^{2}}{2}} dt = \frac{1}{x} e^{\frac{x^{2}}{2}} + 0\left(\int_{1}^{x} e^{\frac{t^{2}}{2}} dt\right)$$

Il vient que:

$$N(x) \sim \frac{1}{\pi x} e^{\frac{x^2}{2}}$$
 quand $x \longrightarrow +\infty$

Mais, par définition $N(x_n) = n$, d'où $n \sim \frac{1}{\pi x_n} e^{\frac{x_n^2}{2}}$. Il vient que

$$\frac{x_n^2}{2} \sim \log n$$
 et $x_n \sim \sqrt{2\log n}$ quand $n \longrightarrow +\infty$

Le principe de croisement de Sturm est résumé par les deux théorèmes suivants :

Théorème de comparaison de Sturm

Soient $q \cdot p$ et $r(\cdot)$ deux fonctions réelles et continues sur un intervalle [a,b] telles que $r(x) \ge q(x), \forall x \in [a,b]$, et soient $y(\cdot)$ et $z(\cdot)$ deux solutions réelles respectives (sur [a,b]) des deux équations différentielles :

$$y''(x) + q(x)y(x) = 0$$
 (E)

$$z''(x) + r(x)z(x) = 0$$
 (E')

Alors

- a) Si $x_0, x_1, (x_0 < x_1)$ sont deux zéros consécutifs (c'est à dire successifs) de $y(\cdot), z(\cdot)$ s'annule en un point de $[x_0, x_1]$ et si de plus $z(x_0) = 0$, alors $z(\cdot)$ s'annule en un point de $[x_0, x_1]$.
- b) Si $y_1(\cdot), y_2()$ sont deux solutions non proportionnelles de (E) et u, v, (u < v) deux zérso successifs de $y_1(\cdot)$, alors $y_2 \cdot ...$ s'annule en un point de [u, v].

Preuve:

a) Supposons $z(\cdot)$ sans zéros sur $[x_0, x_1]$ c'est à dire

$$\forall x \in [x_0, x_1] : z(x) \neq 0$$

et $z(\cdot)$ une solution de (E') sur [a,b]. Il vient que $z(\cdot)$ garde un signe constant sur $]x_0,x_1[$. Prenons par exemple

$$z(x) > 0, \forall x \in [x_0, x_1]$$

Et de même on peut supposer

$$y(x) > 0, \forall x \in [x_0, x_1]$$

Ceci implique que $y'(x_0) > 0$ et $y'(x_1) < 0$ (d'après le lemme des pentes dans le théorème (1.1.1)).

Considérons maintenant le Wronksien:

$$w(x) = y(x)z'(x) - z(x)y'(x)$$

Il vient que

$$w'(x) = y(x)'z'(x) + y(x)z''(x) - y''z = y(x)z''(x) - y''(x)z(x)$$

C'est à dire

$$w'(x) = [q(x) - r(x)]y(x)z(x)$$

D'où

$$w'(x) \leqslant 0$$
, $\forall x \in [x_0, x_1]$

Alors $w(\cdot)$ est décroissant sur $[x_0, x_1]$.

Or que
$$w(x_0) = -y'(x_0)z(x_0) < 0$$
 et $w(x_1) = -y'(x_1)z(x_1) > 0$, donc $w(x_1) > w(x_0)$

D'où une contradiction avec $w(\cdot)$ décroissante. Cela montre que $z(\cdot)$ s'annule au moins en un point de $[x_0, x_1]$.

La deuxième assertion de a) se prouve de même, avec cette fois $w(x_0) = 0$

b) c'est une conséquence de a) immédiate.

Théorème 1.2.5. "Théorème de Sturm périodique "

Soit $q : \mathbb{R} \longrightarrow \mathbb{R}$ une fonction continue, T-périodique, T > 0. Considérons l'équation différentielle :

$$y''(x) + q(x)y(x) = 0$$
 (E)

- a) On a l'alternative : (d'où la solution nulle est exclue)
 - (i) Toute solution réelle de (E) a au plus un zéro (exemple y''(x) y(x) = 0).
 - (ii) Toute solution réelle de (E) a une infinité de zéros (exemple y''(x) + y(x) = 0).
- b) Si $q(x) \le 0, \forall x \in \mathbb{R}$, alors on est dans le cas (i) (même si $q(\cdot)$ n'est pas périodique).
- c) Si $q(x) \ge 0$ et $q \ne 0$, alors on est dans le cas (ii).

CORROLAIRE 1.2.6. Soit $y(\cdot)$ une solution non triviale de

$$y''(x) + q(x)y(x) = 0$$

sur I = [a,b]. Si

$$q(x) \leqslant 0, \quad \forall x \in I$$

alors $y(\cdot)$ a au plus un zéro sur I.

Théorème de séparation de Sturm"

Soit $y_1(\cdot)$ et $y_2(\cdot)$ deux solution linéairement indépendantes de l'équation différentielle

$$y''(x) + p(x)y'(x) + q(x)y(x) = 0$$
, $x \in I$ (E)

Alors les zéros de $y_1(\cdot)$ sont distinctes de celles de $y_2(\cdot)$ et les deux suites de zéros alternent, c'est à dire $y_1(\cdot)$ a exactement un zéro entre deux zéros successifs de $y_2(\cdot)$, et vice versa.

Preuve : Comme $y_1(\cdot)$ et $y_2(\cdot)$ sont linéairement indépendantes, alors leur Wronksien est non nul sur I :

$$w(x) = y_1(x)y_2'(x) - y_2(x)y_1'(x) \neq 0, \quad \forall x \in I$$

Donc, son signe est constant sur I. Notons de plus que $y_1(\cdot)$ et $y_2(\cdot)$ ne peuvent pas avoir un zéro commun (sinon dans ce cas $w(\cdot)$ sera nul.) Supposons x_1 , x_2 deux zéros successifs de $y_2(\cdot)$, alors :

$$w(x_1) = y_1(x_1)y_2'(x_1) \neq 0$$

$$w(x_2) = y_1(x_2)y_2'(x_2) \neq 0$$

D'où $y_1(x_1), y_2(x_1), y_1(x_2), y_2(x_2)$ ne sont pas nulles tous.

Comme $y_2'(\cdot)$ est continue sur I, x_1 admet un voisinage U_1 où le signe de $y_2'(\cdot)$ ne change pas, et similairement x_2 admet un voisinage U_2 où $y_2'(\cdot)$ ne change pas de signe.

Mais le signe de $y_2'(\cdot)$ dans $U_1 \cap I$ et $U_2 \cap I$ ne peut pas être le même, pour si $y_2(\cdot)$ est croissante sur l'un des deux voisinages alors elle doit être décroissante sur l'autre voisinage.

Pour $w(\cdot)$ soit de signe constant sur I, $y_1(x_1)$ et $y_1(x_2)$ doivent avoir des signes apposées, donc $y_1(\cdot)$ "comme elle est continue" a au moins un zéro entre x_1 et x_2 .

Il ne peut y avoir plus d'un tel zéro, car si x_3 et x_4 sont deux zéros de $y_1(\cdot)$ qui se situent entre x_1 et x_2 , on peut utiliser le même argument pour conclure que $y_2(\cdot)$ s'annule entre x_3 et x_4 .

Mais ceci contredit la fait que x_1 et x_2 sont deux zéros successifs de $y_2(\cdot)$.

CORROLAIRE 1.2.8. Si deux solutions de (E) ont un zéro commun sur I, alors elles sont linéairement indépendantes.

Remarque : Dans le but de l'étude de la distribution des zéros de l'équation (E), il serait plus commode si on peut se débarrasser du terme p(x)y'(x) en transformant l'équation (E) à l'équation :

$$u''(x) + \rho(x)u(x) = 0$$
 (20)

Pour cela, on pose:

$$y(x) = u(x)v(x) \tag{21}$$

D'où

$$y'(x) = u'(x)v(x) + v'(x)u(x)$$

$$y''(x) = u''(x)v(x) + 2u'(x)v'(x) + u(x)v''(x)$$

En substituant dans (E), on aura :

$$u''(x)v(x) + [2v'(x) + p(x)v(x)]u'(x) + [v''(x) + p(x)v'(x) + q(x)v(x)]u(x) =$$
(22)

Pour obtenir (20), on doit choisir dans (22):

$$2v'(x) + p(x)v(x) = 0$$

ce qui implique que :

$$v(x) = e^{-\frac{1}{2} \int_0^x p(\tau) d\tau}$$
 (23)

et

$$\rho(x) = q(x) - \frac{1}{4}p^2(x) - \frac{1}{2}p'(x) \tag{24}$$

La fonction exponentielle $v(\cdot)$ ne s'annule pas sur \mathbb{R} , d'où les zéros de $u(\cdot)$ coïncident avec ceux de $y(\cdot)$, et nous pouvons donc, dans le but d'enquêter sur la distribution des zéros pour (E), limiter notre attention pour l'équation (20).

Théorème 1.2.9. "Théorème de comparaison de Sturm" Soient $\varphi(), \psi \cdot .)$ deux solutions non triviales des deux équations :

$$y'(x) + q_1(x)y(x) = 0$$

$$z''(x) + q_2(x)z(x) = 0$$

sur I respectivement, et supposons que $q_1(x) \ge q_2(x), \forall x \in I$.

Alors $\phi(\cdot)$ a au moins un zéro entre quelles deux zéros successifs de $\psi(\cdot)$, sauf si

$$q_1(x) = q_2(x)$$
 et $\varphi(x) = \psi(x)$

Preuve : Soient x_1, x_2 deux zéros successifs de $\psi(\cdot)$ sur I, et supposons que $\varphi(\cdot)$ n'a aucun zéro sur l'intervalle ouvert $]x_1, x_2[$.

Supposons que φ .) et ψ (·) sont positives sur] x_1, x_2 [, sinon changer le signe de la fonction négative.

Comme φ' et ψ' sont continues, il vient que $\psi'(x_1) \ge 0$ et $\psi'(x_2) \le 0$, et de plus les wronksien de φ et ψ satisfait

$$\begin{aligned}
w(x_1) &= \varphi(x_1) \psi'((x_1) - \varphi'(x_1) \underbrace{\psi(x_1)}_{=0} = \varphi(x_1) \psi'(x_1) \geqslant 0 \\
w(x_2) &= \varphi(x_2) \psi'(x_2) \leqslant 0
\end{aligned} (25)$$

Mais

$$w'(x) = \varphi(x)\psi''(x) - \varphi''(x)\psi(x)$$

= $[q_1(x) - q_2(x)]\varphi(x)\psi(x) \ge 0, \forall x \in]x_1, x_2[$

D'où $w(\cdot)$ est croissante sur $]x_1, x_2[$. Ceci contredit (25), sauf si $q_1(x) - q_2(x) = 0$ et w(x) = 0, dans ce cas φ et ψ sont linéairement dépendantes.

CORROLAIRE 1.2.10. Soit $\varphi(\cdot)$ une solution non triviale de y"(x) + q(x)y(x) = 0 sur I. Si

$$q(x) \leq 0, \forall x \in I$$

alors $\phi(\cdot)$ admet au plus un zéro sur I.

Preuve : Supposons $\varphi(\cdot)$ admet deux zéros sur I, notées x_1 et x_2 . Alors d'après le théorème précédent, la solution $\psi(x) = 1$ de l'équation : u''(x) = 0 doit s'annuler sur $]x_1, x_2[$, ce qui est impossible.

Exemple 2.

(1) L'équation différentielle y''(x) = 0 sur \mathbb{R} admet une solution (non nulle) :

$$\varphi(x) = c_1 x + c_2$$

Elle est représentée par une droite, qui a au plus un seul zéro.

(2) L'équation y''(x) - y(x) = 0 a une solution générale

$$\varphi(x) = c_1 e^x + c_2 e^{-x}, x \in \mathbb{R}$$

Si c_1 et c_2 ne sont pas nulle à la fois , alors $\varphi(x) \neq 0$ pour tout $x \in \mathbb{R}$, sauf si $c_1 = -c_2$ et dans ce cas φ a un seul zéro en x = 0

(3) L'équation y''(x) + y(x) = 0 a une solution général :

$$\varphi(x) = c_1 \cos x + c_2 \sin x = a \sin(x - b)$$

où
$$a = \sqrt{c_1^2 + c_2^2}$$
 et $b = -\arctan(\frac{c_1}{c_2})$

Si $a \neq 0$, φ a un nombre infini de zéros donné par :

$$x_n = b + n\pi, n \in \mathbb{Z}$$

DÉFINITION 1.2.11. Une solution non triviale de

$$y''(x) + q(x)y(x) = 0, x \in I$$
 (26)

est dite oscillante si elle admet un nombre infini de zéros.

REMARQUE 1.2.12. Alors l'équation y''(x) + y(x) = 0 est dite oscillante.

D'après le théorème 4 de comparaison de Sturm , si l'équation (26) a des solutions oscillante, elles dépendent de la fonction $q(\cdot)$. Si $q(x) \leq 0$, alors par le corollaire (1.2.3) , ces solutions ne peuvent pas être oscillantes. Mais, si on suppose que :

$$r(x) > k^2 > 0, \forall x \in I \tag{27}$$

pour une constante positive k, alors toute solution de (26) sur I a un nombre infini de zéros distribuer entre les zéros des solutions de

$$y''(x) + k^2 y(x) = 0, x \in I$$
(28)

tels que $y(x) = a \sin k(x - b)$ qui a des zéros donnés par :

$$x_n = b + \frac{n\pi}{k}, n \in \mathbb{Z}$$
 (29)

Par suite, tout sous intervalle J de I de longueur $\frac{\pi}{k}$ a au plus un seul zéro de l'équation (26), et comme k augmente on s'attendrait à ce que le nombre de zéro augmente. Ceci bien sûr est clair si

$$q(x) = constante$$

REMARQUE 1.2.13. D'après le théorème de séparation, on conclus aussi que si I est un intervalle infini et une solution de l'équation :

$$y''(x) + p(x)y'(x) + q(x)y(x) = 0$$
(30)

est oscillante, alors toute autre solution est aussi oscillante.

Exemple 3:

L'équation

$$y''(x) + \frac{1}{x}y'(x) + (1 - \frac{\alpha^2}{x^2})y(x) = 0, 0 < x < \infty$$
 (31)

est appele : équation de Bessel d'ordre α .

En utilisant la formule (23) – (24), c'est à dire $v(x) = e^{\frac{-1}{2} \int_a^x p(s) ds} = \frac{1}{\sqrt{x}}$ et

$$\rho(x) = q(x) - \frac{1}{4}p^{2}(x) - p'(x) = 1 + \frac{1 - 4\alpha^{2}}{4x^{2}}$$

et

$$y(x) = u(x)v(x)$$

d'où par la transformation $y(x) = \sqrt{x}u(x)$ on aura

$$u''(x) + \rho(x)u(x) = 0$$

c'est à dire

$$u''(x) + \left(1 + \frac{1 - 4\alpha^2}{4x^2}\right)u(x) = 0$$
(32)

Par comparaison entre l'équation (32) et l'équation u''(x) + u(x) = 0 (ici k = 1) , on voit que

$$\rho(x) = 1 + \frac{1 - 4\alpha^2}{4x^2} \geqslant 1 \text{ si } 0 \leqslant \alpha \leqslant \frac{1}{2}$$

et

$$\rho(x) = 1 + \frac{1 - 4\alpha^2}{4x^2} \leqslant 1 \text{ si } \alpha > \frac{1}{2}$$

D'où on peut conclure :

(a) Si $0 \leqslant \alpha \leqslant \frac{1}{2}$, alors dans tout sous intervalle de $]0,+\infty[$ de longueur π , toutesolutiondel' quationdeBessel(31) aaumoinsunseulzro. Si $\alpha > \frac{1}{2}$, alors dans tout sous intervalle de $]0,+\infty[$ de longueur π , toute solution de l'équation de Bessel (31) a au plus un seul zéro.

(b) Si $\alpha = \frac{1}{2}$, la distance entre les zéros successives de toute solution non triviale de (31) est exactement π .

1.3. Développement en série entière des solutions de (E) ou (F)

Pour alléger les calculs, on va traiter seulement le cas de l'équation E.

$$y''(x) + p(x)y'(x) + q(x)y(x) = 0$$
 (E)

On a le théorème suivant :

THÉORÈME 1.3.1. On suppose que $p(x) = \sum_{n=0}^{\infty} p_n x^n$ et $q(x) = \sum_{n=0}^{\infty} q_n x^n$, les séries convergent pour |x| < R. Alors pour tout $(a_0, a_1) \in K^2$, (E) a une solution unique $\varphi(\cdot)$ telle que

$$\varphi(0) = a_0, \varphi'(0) = a_1$$

et $\varphi(\cdot)$ est développable en série entière convergente sur]-R,R[, c'est à dire

$$\varphi(x) = \sum_{n=0}^{\infty} a_n x^n \tag{34}$$

Preuve:

On démontre ici seulement l'expression de la série entière (c'est à dire les valeurs des a_n , $n \ge 0$).

Supposons que $\varphi(\cdot)$ est solution de (E) telle que $\varphi(x) = \sum_{n \ge 0} a_n x^n$ $(a_0, a_1 \text{ imposés})$, la série converge pour |x| < R. Alors

$$\phi'(x) = \sum_{n \geqslant 0} n a_n x^{n-1} = \sum_{n \geqslant 0} (n+1) a_{n+1} x^n
\phi''(x) = \sum_{n \geqslant 0} (n+2) (n+1) a_{n+2} x^n$$
(35)

Il vaut que

$$p(x)y'(x) = \sum_{n \geqslant 0} (\sum_{j=0}^{n} (n-j+1)a_{n-j+1}p_j)x^n$$

$$q(x)\varphi(x) = \sum_{n \geqslant 0} (\sum_{j=0}^{n} a_{n-j}q_j)x^n$$
(36)

Alors $\varphi \cdot ...$) solution de (E)

$$\varphi''(x) + p(x)\varphi'(x) + q(x)\varphi(x) = 0$$

sSi seulement si tous les coefficients de la série entière associée à cette équation sont nuls, c'est à dire si seulement si pour tout $n \ge 0$:

$$(n+2)(n+1)a_{n+2} = -\sum_{j=0}^{n} (n-j+1)a_{n-j+1}p_j - \sum_{j=0}^{n} a_{n-j}q_j$$
 (37)

Cette relation montre que la donnée de a_0, a_1 impose les valeurs de a_2, a_3, \cdots

1.4. Stabilité

Dans ce paragraphe, on va s'intéresser au caractère borné des solutions de l'équation homogène :

$$y''(x) + q(x)y(x) = 0 (38)$$

où $q: \mathbb{R} \longrightarrow \mathbb{R}$ est une fonction continue, π - périodique et paire. On note $(y_1(.), y_2(.))$ la base canonique de solution de l'équation (38) associée à $x_0 = 0$ c'est à dire

$$\begin{cases}
 y_1(0) = 1, & y'_1(0) = 1 \\
 y_2(0) = 0, & y'_2(0) = 1
 \end{cases}
 \tag{3}$$

On note aussi l'endomorphisme : $A: W \longrightarrow W$ défini par

$$Ay(x) = y(x + \pi) \tag{40}$$

De plus la matrice de A dans la base $(y_1(.),y_2(.))$, encore notée A, est donnée par :

$$A = \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} y_1(\pi) & y_2(\pi) \\ y'_1(\pi) & y'_2(\pi) \end{bmatrix}$$
(41)

Et aussi on pose

$$T = trA = a + d = y_1(\pi) + y_2'(\pi)$$
(42)

On a les résultats suivants :

PROPOSITION 1.4.1. 1) $y_1(\cdot)$ est paire, $y_2(\cdot)$ est impaire et $\det A = 1$.

- 2) $a = d \ c'est \ a \ dire \ y_1(\pi) = y_2'(\pi)$.
- 3) |T| < 2 implique que toutes les solutions de (38) sont bornées.
- 4) |T| = 2 implique que (38) possède une solution non nulle bornée.
- 5) |T| = 2 si seulement si bc = 0.
- 6) |T| > 2 implique que toutes les solutions non nulles de (38) sont non bornées.

Théorème 1.4.2. Supposons que $q(x) \ge 0, \forall x \in \mathbb{R}$ et que q(.) n'est pas identiquement nulle. Si :

$$\int_0^{\pi} q(x)dx \leqslant \frac{4}{\pi}$$

alors, toute les solutions de (38) sont bornées.