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1 Preliminaries about partial

di�erential equations

1.1 Introduction

A partial di�erential equation (PDE) describes a relation between an unknown
function and its partial derivatives. PDEs appear frequently in all areas of physics
and engineering. Moreover, recently PDEs take an important attention in other
areas such as biology, chemistry, computer sciences and in economics. In fact, in
each area where there is an interaction between a number of independent variables,
we attempt to de�ne functions in these variables and to model a variety of processes
by constructing equations for these functions. When the value of the unknown
functions at a certain point depend only on what happens in the neighborhood of
this point, we shall, in general, obtain a PDE.

De�nition 1.1.1. The general form of a PDE for a function u(x1, x2, · · · , xn) is
a relation that takes the general form

F (x1, x2, · · · , xn, u, ux1 , ux2 , · · · , ux11 , · · · ) = 0, (Eq1)

where x1, x2, · · · , xn are the independent variables, u is the unknown function,
uxi

is the partial derivative ∂u
∂xi

.

Remark 1.1.2. The equation (Eq1) is, in general, supplemented by additional con-
ditions such as initial conditions or boundary conditions.

The analysis of PDEs has many features:
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(1) The classical approach was to develop methods for �nding explicit solutions,
for example the characteristic method enables us to determine solutions
fortransport equations which are PDEs of �rst order, and the separa-
tion method helps to de�ne solutions for example to heat equation, wave
equation, Laplace equation whose are PDEs of second order.

(2) The technical advances were followed by theoretical progress aimed at un-
derstanding the solution's structure. The goal is to discover some of the
solution's properties before actually computing it, and sometimes even without
a complete solution.

(3) The theoretical analysis of PDEs is not merely of academic interest, but rather
has many applications. It should be stressed that there exist very complex
equations that cannot be solved even with the aid of supercomputers. All we
can do in these cases is to attempt to obtain qualitative information on
the solution.

(4) In addition, a deep important question relates to the formulation of the equa-
tion and its associated side conditions. In general, the equation originates
from a model of a physical or engineering problem.

(5) It is not automatically obvious that the model is indeed consistent in the sense
that it leads to a solvable PDE. Furthermore, it is desired in most cases that
the solution will be unique, and that it will be stable under small perturbations
of the data. A theoretical understanding of the equation enables us to check
whether these conditions are satis�ed.

As we shall see in what follows, there are many ways to solve PDEs, each way ap-
plicable to a certain class of equations. Therefore it is important to have a thorough
analysis of the equation before (or during) solving it.
The French mathematician Jacques Hadamard (1865 − 1963) coined the notion of
well-posedness for a PDEs problem, that we have the following de�nition.

De�nition 1.1.3. A problem of PDEs is called well-posed if it satis�es all of the
following criteria

(1) Existence: the problem has a solution.

(2) Uniqueness: there is no more than one solution.

(3) Stability: a small change in the equation or in the side conditions gives rise to
a small change in the solution.

If one or more of the conditions above does not hold, we say that the problem is
ill-posed.
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1.2 Classi�cation

1.2 Classi�cation

We pointed out in the introduction that PDEs are often classi�ed into di�erent
types. In fact, there exist several such classi�cations. Some of them will be described
here.

1.2.1 The order of an equation

The �rst classi�cation is according to the order of the equation.

De�nition 1.2.1. The order is de�ned to be the order of the highest derivative
in the equation. If the highest derivative is of order n, then the equation is said to
be of order n.

Example 1.2.2. (1)Let us taking the wave equation (or vibration equation)

utt − c2uxx = f(x, t),

with u(x, t) is the unknown function with independent variables (t, x) and f is a
known function. This PDE is of order 2.
(2) The transport equation given by

ut + uux = 0

is a PDE of an unknown u(t, x) of order 1.
(3) The minimal surface equation given by

(1 + u2y)uxx − 2uxuyuxy + (1 + u2x)uyy = 0

is a PDE of unknown u(x, y) of order 2.

1.2.2 Linear equations

Another classi�cation is into two groups: linear or nonlinear equations.

De�nition 1.2.3. An equation is called linear if in (Eq1), F is a linear function
of the unknown function u and its derivatives.

Example 1.2.4. (1) The PDE of unknown u(x, y) given by

x3ux + exyuy − sin(x2 + y2)u = x3
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is linear.
(2) Transport equation given by

ut + uux = 0

is non linear.
(3) Eikonal equation given by

u2x + u2y = c2

is non linear.

Remark 1.2.5. The nonlinear equations are often further classi�ed into sub-classes
according to the type of the nonlinearity. Generally speaking, the nonlinearity is more
pronounced when it appears in a higher derivative. For example, the following
two PDEs are both nonlinear:

uxx + uyy = u3

uxx + uyy = (u2x + u2y)u

We observe that in both of the previous equations, the terms of high derivatives
are linear, but, in �rst equation, the non linearity appears only in the unknown
u,and so such equations are called semilinear. While in the second equation, the
non linearity appears the terms of derivatives less than the order of the PDE, and
so such equation s are called quasilinear.

1.2.3 Homogeneity of equations

De�nition 1.2.6. The PDE (Eq1) is said to be homogeneous, if there is no term
that contains only independent variables.

Example 1.2.7. (1) The heat equation given by

ut − αuxx = f(x, t)

is non homogeneous.

(2) The Laplace equation
uxx + uyy = 0

is homogeneous.

(3) The telegraph equation
ut + utt − uxx = 0

is homogeneous.
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1.3 Solving equations (solutions of PDE)

(4) Eikonal equation
u2x + u2y = c2

is non homogeneous.

1.2.4 Scalar equations and systems of equations

De�nition 1.2.8. A single PDE with just one unknown function is called a scalar
equation. In contrast, a set of m equations with ` unknown functions is called a
system of m equations.

1.3 Solving equations (solutions of PDE)

De�nition 1.3.1. A function in the set Cn that satis�es a PDE (??) of order n,
will be called a classical (or strong) solution of the PDE.

Example 1.3.2.

(1) Let us taking the PDE
uxx = 0

for an unknown function u(x, y) of independent variables (x, y). We can consider
the equation as an ordinary di�erential equation in the variable x, with y being a
parameter. To do this, let us use the change of unknown

v(x, y) == ∂xu(x, y).

Then the PDE uxx = 0 becomes
∂xv = 0

This obtained equation is an ODE in x. Thus, by integration with respect to x, we
have ∫

∂xv(x, y)dx = 0

Thus a general solution of this ODE is given by

v(x, y) = A(y) +B,

where A(·) is a function of the variable y and B is a constant. Then

v(x, y) = ∂xu(x, y) = A(y) +B.
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By integration in x once again, we deduce a general solution to the PDE as follows

u(x, y) = C(y)x+D(y),

where C(·) and D(·) are arbitrary function in the variable y.

1.4 Exercises

Exercise 1.

Show that each of the following equations has a solution of the form u(x, y) = f(ax+
by) for a proper choice of the constants a and b, and �nd the constants for each
example:

(1) ux + 3uy = 0,

(2) 3ux − 7uy = 0,

(3) 2ux + πuy = 0.

Exercise 2.

Let u(x, y) =
√
x2 + y2 be a solution to the minimal surface equation

(1 + u2y)uxx − 2uxuyuxy + (1 + u2x)uyy = 0

(1) Prove that h(r) with r =
√
x2 + y2 satis�es the ordinary di�erential equation

rh′′(r) + h′(r)
(
1 + (h′(r))2

)
= 0

(2) Determine a general solution to this ordinary di�erential equation.
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