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1 Preliminaries about partial

di�erential equations

1.1 Introduction

A partial di�erential equation (PDE) describes a relation between an unknown
function and its partial derivatives. PDEs appear frequently in all areas of physics
and engineering. Moreover, recently PDEs take an important attention in other
areas such as biology, chemistry, computer sciences and in economics. In fact, in
each area where there is an interaction between a number of independent variables,
we attempt to de�ne functions in these variables and to model a variety of processes
by constructing equations for these functions. When the value of the unknown
functions at a certain point depend only on what happens in the neighborhood of
this point, we shall, in general, obtain a PDE.

De�nition 1.1.1. The general form of a PDE for a function u(x1, x2, · · · , xn) is
a relation that takes the general form

F (x1, x2, · · · , xn, u, ux1 , ux2 , · · · , ux11 , · · · ) = 0, (Eq1)

where x1, x2, · · · , xn are the independent variables, u is the unknown function,
uxi is the partial derivative

∂u
∂xi

.

Remark 1.1.2. The equation (Eq1) is, in general, supplemented by additional con-
ditions such as initial conditions or boundary conditions.

The analysis of PDEs has many features:
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1 Preliminaries about partial di�erential equations

(1) The classical approach was to develop methods for �nding explicit solutions,
for example the characteristic method enables us to determine solutions
fortransport equations which are PDEs of �rst order, and the separa-
tion method helps to de�ne solutions for example to heat equation, wave
equation, Laplace equation whose are PDEs of second order.

(2) The technical advances were followed by theoretical progress aimed at un-
derstanding the solution's structure. The goal is to discover some of the
solution's properties before actually computing it, and sometimes even without
a complete solution.

(3) The theoretical analysis of PDEs is not merely of academic interest, but rather
has many applications. It should be stressed that there exist very complex
equations that cannot be solved even with the aid of supercomputers. All we
can do in these cases is to attempt to obtain qualitative information on
the solution.

(4) In addition, a deep important question relates to the formulation of the equa-
tion and its associated side conditions. In general, the equation originates
from a model of a physical or engineering problem.

(5) It is not automatically obvious that the model is indeed consistent in the sense
that it leads to a solvable PDE. Furthermore, it is desired in most cases that
the solution will be unique, and that it will be stable under small perturbations
of the data. A theoretical understanding of the equation enables us to check
whether these conditions are satis�ed.

As we shall see in what follows, there are many ways to solve PDEs, each way ap-
plicable to a certain class of equations. Therefore it is important to have a thorough
analysis of the equation before (or during) solving it.
The French mathematician Jacques Hadamard (1865 − 1963) coined the notion of
well-posedness for a PDEs problem, that we have the following de�nition.

De�nition 1.1.3. A problem of PDEs is called well-posed if it satis�es all of the
following criteria

(1) Existence: the problem has a solution.

(2) Uniqueness: there is no more than one solution.

(3) Stability: a small change in the equation or in the side conditions gives rise to
a small change in the solution.

If one or more of the conditions above does not hold, we say that the problem is
ill-posed.
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1.2 Classi�cation

1.2 Classi�cation

We pointed out in the introduction that PDEs are often classi�ed into di�erent
types. In fact, there exist several such classi�cations. Some of them will be described
here.

1.2.1 The order of an equation

The �rst classi�cation is according to the order of the equation.

De�nition 1.2.1. The order is de�ned to be the order of the highest derivative
in the equation. If the highest derivative is of order n, then the equation is said to
be of order n.

Example 1.2.2. (1)Let us taking the wave equation (or vibration equation)

utt − c2uxx = f(x, t),

with u(x, t) is the unknown function with independent variables (t, x) and f is a
known function. This PDE is of order 2.
(2) The transport equation given by

ut + uux = 0

is a PDE of an unknown u(t, x) of order 1.
(3) The minimal surface equation given by

(1 + u2y)uxx − 2uxuyuxy + (1 + u2x)uyy = 0

is a PDE of unknown u(x, y) of order 2.

1.2.2 Linear equations

Another classi�cation is into two groups: linear or nonlinear equations.

De�nition 1.2.3. An equation is called linear if in (Eq1), F is a linear function
of the unknown function u and its derivatives.

Example 1.2.4. (1) The PDE of unknown u(x, y) given by

x3ux + exyuy − sin(x2 + y2)u = x3
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1 Preliminaries about partial di�erential equations

is linear.
(2) Transport equation given by

ut + uux = 0

is non linear.
(3) Eikonal equation given by

u2x + u2y = c2

is non linear.

Remark 1.2.5. The nonlinear equations are often further classi�ed into sub-classes
according to the type of the nonlinearity. Generally speaking, the nonlinearity is more
pronounced when it appears in a higher derivative. For example, the following
two PDEs are both nonlinear:

uxx + uyy = u3

uxx + uyy = (u2x + u2y)u

We observe that in both of the previous equations, the terms of high derivatives
are linear, but, in �rst equation, the non linearity appears only in the unknown
u,and so such equations are called semilinear. While in the second equation, the
non linearity appears the terms of derivatives less than the order of the PDE, and
so such equation s are called quasilinear.

1.2.3 Homogeneity of equations

De�nition 1.2.6. The PDE (Eq1) is said to be homogeneous, if there is no term
that contains only independent variables.

Example 1.2.7. (1) The heat equation given by

ut − αuxx = f(x, t)

is non homogeneous.

(2) The Laplace equation
uxx + uyy = 0

is homogeneous.

(3) The telegraph equation
ut + utt − uxx = 0

is homogeneous.
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1.3 Solving equations (solutions of PDE)

(4) Eikonal equation
u2x + u2y = c2

is non homogeneous.

1.2.4 Scalar equations and systems of equations

De�nition 1.2.8. A single PDE with just one unknown function is called a scalar
equation. In contrast, a set of m equations with ` unknown functions is called a
system of m equations.

1.3 Solving equations (solutions of PDE)

De�nition 1.3.1. A function in the set Cn that satis�es a PDE (??) of order n,
will be called a classical (or strong) solution of the PDE.

Example 1.3.2.

(1) Let us taking the PDE
uxx = 0

for an unknown function u(x, y) of independent variables (x, y). We can consider
the equation as an ordinary di�erential equation in the variable x, with y being a
parameter. To do this, let us use the change of unknown

v(x, y) == ∂xu(x, y).

Then the PDE uxx = 0 becomes
∂xv = 0

This obtained equation is an ODE in x. Thus, by integration with respect to x, we
have ∫

∂xv(x, y)dx = 0

Thus a general solution of this ODE is given by

v(x, y) = A(y) +B,

where A(·) is a function of the variable y and B is a constant. Then

v(x, y) = ∂xu(x, y) = A(y) +B.
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1 Preliminaries about partial di�erential equations

By integration in x once again, we deduce a general solution to the PDE as follows

u(x, y) = C(y)x+D(y),

where C(·) and D(·) are arbitrary function in the variable y.

1.4 Exercises

Exercise 1.

Show that each of the following equations has a solution of the form u(x, y) = f(ax+
by) for a proper choice of the constants a and b, and �nd the constants for each
example:

(1) ux + 3uy = 0,

(2) 3ux − 7uy = 0,

(3) 2ux + πuy = 0.

Exercise 2.

Let u(x, y) =
√
x2 + y2 be a solution to the minimal surface equation

(1 + u2y)uxx − 2uxuyuxy + (1 + u2x)uyy = 0

(1) Prove that h(r) with r =
√
x2 + y2 satis�es the ordinary di�erential equation

rh′′(r) + h′(r)
(
1 + (h′(r))2

)
= 0

(2) Determine a general solution to this ordinary di�erential equation.
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2 First order equations and the

characteristic method

2.1 De�nitions

De�nition 2.1.1. A �rst order partial di�erential equation for an unknown function
u(x1, x2, · · · , xn) has the following general form

F
(
x1, x2, · · · , xn, u, ux1 , ux2 , · · · , uxn

)
= 0. (Eq2)

First-order equations appear in a variety of physical and engineering processes, such
as the transport of material in a �uid �ow and propagation of wave fronts in optics.
Nevertheless they appear less frequently than second-order equations.
For simplicity, we will limit our study in this chapter to �rst order equations with
unknown of two independent variables. So, let u be an unknown function of
two independent variables (x, y) ∈ Ω, where Ω is an open subset of R2. We consider
the �rst order equation of two variables in the general form

F
(
x, y, u, ux, uy

)
= 0. (Eq3)

Remark 2.1.2. We observe that the triplet (x, y, u(x, y)) is a surface of R3 whose
graph is given by u(x, y), then such surface satis�es the equation (Eq3). So, to solve
(Eq3), the main solution method will be a direct construction of the solution surface.

De�nition 2.1.3. The �rst order equation (Eq3) is said to be

(1) linear, if it has the following general form

a(x, y)ux + b(x, y)uy = c0(x, y)u+ c1(x, y),

where a(x, y), b(x, y), c0(x, y), c1(x, y) are known functions in the variables
(x, y).

(2) quasi- linear, if it has the following general form

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u),
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2 First order equations and the characteristic method

(3) non linear, if (Eq3) is non linear.

Example 2.1.4.
ux = αu+ g(x, y)

is a linear and non homogeneous �rst order equation with

a(x, y) = 1, b(x, y) = 0, c0(x, y) = α, c1(x, y) = g(x, y).

We observe that in this PDE, there is only a derivative in x, then we can regard the
variable y as a parameter. Let us solving this PDE with the initial condition

u(0, y) = y.

Since we are actually dealing with an ODE, the solution (using Duhamel's for-
mula) is given by

u(x, y) = eαx
(
y +

∫ x

0

e−αsb(s, y)ds
)

2.2 Characteristic method

We aim to solving �rst-order PDE by the characteristic method. This
method was developed by Hamilton who investigated the propagation
of light. He work to derive the rules governing this propagation from a
purely geometric theory, like to Euclidean geometry.
We shall �rst develop the method of characteristic heuristically. Later
we shall present a precise theorem that guarantees that, under suitable
assumptions, the equation together with its associated condition has a
bf unique solution. The characteristic method is based on âknittingâ the
solution surface with a one parameter family of curves that intersect a
given curve in space.

2.2.1 Characteristic method for linear equations

Let us consider the general linear equation

a(x, y)ux + b(x, y)uy = c0(x, y)u+ c1(x, y), (2.1)

with initial conditions
u(x0, y0) = u0. (2.2)

Let s ∈ I be parameter with I is an interval of R, and denote by Γ a
parametrization over the variables (x, y). Thus, one can write conditions
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2.2 Characteristic method

(2.2) by this parametrization as follows

Γ(s) = (x0(s), y0(s), u0(s)), s ∈ I (2.3)

The curve Γ is called the initial curve.
We observe that the PDE (2.1) can be written as a scalar product, that
is to say (

a(x, y), b(x, y), c0(x, y)u+ c1(x, y)
)
·
(
ux, uy,−1

)
= 0. (2.4)

Since
(
ux, uy,−1

)
is normal to the surface u, the vector(

a(x, y), b(x, y), c0(x, y)u+ c1(x, y)
)

is in the tangent plane. Then, one can write

dx

dt
(t) = a(x(t), y(t)) (2.5)

dy

dt
(t) = b(x(t), y(t)) (2.6)

du

dt
(t) = c0(x(t), y(t))u(t) + c1(x(t), y(t)) (2.7)

This system of equations de�nes spatial curves lying on the solution sur-
face (conditioned so that the curves start on the surface). This is a system
of �rst-order ordinary di�erential equations. They are called the system
of characteristic equations. The solutions are called characteristic curves
of the equation. Notice that equations (2.1) are autonomous, that is
to say there is no explicit dependence on the parameter t. In order to
determine a characteristic curve we need an initial condition. We shall
require the initial point to lie on the initial curve Γ.

Since each curve (x(t), y(t), u(t)) derives from a di�erent point Γ(s), we shall
write the curves explicitly from (x(t, s), y(t, s), u(t, s)). Then, the initial
conditions are writing as follows

x(0, s) = x0(s), y(0, s) = y0(s), u(0, s) = u0(s). (2.8)

Remark 2.2.1. Above, we have selected the parameter t such that the characteristic
curve is located on Γ

when t = 0. Thus, we can select any other parameterization. We also notice that,
in general, the parameterization

(x(t, s), y(t, s), u(t, s))
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2 First order equations and the characteristic method

represents a surface in R3.

Example 2.2.2. Let us taking the �rst order linear equation

ux + uy = 2

under the initial conditions u(x, 0) = x2.
The characteristic equations and the parametric initial conditions are

d

dt
x(t, s) = 1

d

dt
y(t, s) = 1,

d

dt
u(t, s) = 2,

x(0, s) = s, y(0, s) = 0, u(0, s) = s2.

To solve each of the previous EDO, we integrate with respect to t. We get

x(t, s) = t+ f1(s), y(t, s) = t+ f2(s), u(t, s) = 2t+ f3(s).

Using the initial conditions, one get

x(t, s) = t+ s, y(t, s) = t, u(t, s) = 2t+ s2.

We have thus obtained a parametric representation of the integral surface. To �nd
an explicit representation of the surface u as a function of variables (x, y), we need
to invert the transformation (x(t, s), y(t, s)), and to express it in the form

t(x, y), s(t, y))

That is to say, we will give (t, s) as functions of (x, y). Here, the inverse of the last
equations is given by

t = y, s = x− y.

Hence, the explicit solution is given by

u(x, y) = 2y + (x− y)2.

Remark 2.2.3. Let us recall that the Jacobian associated to the characteristic
equations at points located on the initial curve Γ is given by

J =

∣∣∣∣ a b
(x0)s (y0)s

∣∣∣∣ = a(y0)s − b(x0)s, (2.9)

where (x0)s = dx0
ds

and (y0)s = dy0
ds
. Thus the Jacobian vanishes at some point if

and only if the vectors (a, b) and ((x0)s, (y0)s) are linearly dependent. Hence the
geometrical meaning of a vanishing Jacobian is that the projection of Γ

on the (x, y)− plane is tangent at this point to the projection of the
characteristic curve on that plane. Thus, a �rst order equation admits a unique
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2.2 Characteristic method

solution near the initial curve, if
J 6= 0. (2.10)

This condition is called the transversality condition.

Example 2.2.4. We aim to solve the linear �rst order equations

ux + uy + u = 1,

with initial conditions

u(x, y) = sinx, on y = x+ x2, x > 0.

The characteristic equations and the associated initial conditions are given by

d

dt
x(t, s) = 1,

d

dt
y(t, s) = 1,

d

dt
u(t, s) + u(t, s) = 1

x(0, s) = s, y(0, s) = s+ s2, u(0, s) = sin s.

The associated Jacobian with respect to initial curve is reads as follows

J =

∣∣∣∣1 1
1 1 + 2s

∣∣∣∣ = 2s.

Hence, the problem admits a unique solution if J 6= 0, that is to say s 6= 0. Since
we are limited with the case x > 0, then s 6= 0, so the uniqueness of solution.
Furthermore, the solutions of the characteristic equations under the initial conditions
are (

x(t, s), y(t, s), u(t, s)
)

=
(
s+ t, s+ t2, 1− (1− sin s)e−t

)
.

To obtain s and t in terms of x and y, we substitute the equation of x into the
equation of y, then we get

s =
√
y − x.

The sign of the square root is selected according to the condition x > 0. Hence

t = x−
√
y − x.

Thus, an explicit solution is

u(x, y) = 1−
(

1− sin
√
y − x

)
e−x−

√
y−x,

and such solution exists on the domain

Ω = {(x, y) : 0 < x < y} ∪ {(x, y) : x ≤ 0, x+ x2 < y}
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2 First order equations and the characteristic method

2.2.2 Characteristic method for quasi-linear equations

One can readily verify that the method of characteristics applies to the
quasi-linear equation

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u), (2.11)

as well. Namely, each point on the initial curve

is a starting point for a characteristic curve. The characteristic equations
in this case are reads as follows

dx

dt
(t) = a(x(t), y(t), u(t)) (2.12)

dy

dt
(t) = b(x(t), y(t), u(t)) (2.13)

du

dt
(t) = c(x(t), y(t), u(t)) (2.14)

with the initial conditions

x(0, s) = x0(s), y(0, s) = y0(s), u(0, s) = u0(s). (2.15)

Remark 2.2.5. (1) The di�erence between the characteristic method equations
(2.5) and (2.12) is that in the former case the �rst two equations of (2.5)
are independent of the third equation and of the initial conditions.

(2) We can observe the special role played by the projection of the characteristic
curves on the (x, y)−plane. Hence, in the linear case, the equation for this
projection is given by

dx

dt
(t) = a(x(t), y(t)),

dy

dt
(t) = b(x(t), y(t)). (2.16)

In the quasi-linear case, this uncoupling of the characteristic equations is no
longer possible, since the coe�cients a and b depend on u. We also point
out that in the linear case, the equation for u is always linear, and thus it is
guaranteed to have a global solution (provided that the solutions x(t) and y(t)
exist globally).

(3) We recall also that in the linear case, the equation for u is always linear, and
thus it is guaranteed to have a global solution (that is to say the solutions
x(t), y(t) exist globally with respect to t).

Example 2.2.6. We aim to solve the quasi-linear �rst order equation

(y + u)ux + yuy = x− y,
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2.2 Characteristic method

under the initial condition
u(x, 1) = 1 + x.

The characteristic equations and the parametric initial conditions are given by

d

dt
x(t, s) = y(t, s) + u(t, s),

d

dt
y(t, s) = y(t, s),

d

dt
u(t, s) = x(t, s)− y(t, s),

x(0, s) = s, y(0, s) = 1, u(0, s) = 1 + s.

Firstly, we observe that the solution of the second characteristic equation yt = y is

y(t, s) = et

Adding the �rst equation and the third one gives

(x+ u)t = x+ u

Thus, we get
x(t, s) + u(t, s) = (1 + 2s)et.

Then by using the �rst equation, we get

x(t, s) = (1 + s)et − e−t.

and
u(t, s) = set + e−t.

Also, we observe that
x(t, s)− y(t, s) = set − e−t.

Finally, we get the solution

u(x, y) =
2

y
+ (x− y).

Exercises

Exercise 1.

Use the characteristic method to solve the following �rst order equations with initial
conditions
• xux + yuy = 2u, u(x, 1) = ex,
• uux + uy = 1, u(x, y) = 1

2
x

• −yux + xuy = u, x > 0, y > 0 and u(x, 0) = f(x).
• ux + uy = u2, u(x, 0) = 1.
• (y + 2ux)ux − (x+ 2uy)uy = 1

2
(x2 − y2), u(x, y) = 0, on x− y = 0
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2 First order equations and the characteristic method

Exercise 2.

Let us taking the �rst order PDE

(x+ y2)ux + yuy + (
x

y
− y)u = 1, u(x, 1) = 0, x ∈ R.

(1) Find a general solution to this problem.

(2) Study the condition of transversality of the solution and deduce about the unique-
ness.

(3) Draw the projections on the (x, y)−plane of the initial conditions.

(4) Is the solution obtained de�ned at the origin (0, 0).

2.2.3 Characteristic method for non linear equations
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