Université de Batna –2– Faculté de Mathématiques et d'Informatique Département de Mathématiques Master 1- EDP et applications

Module : EDO 1 2019 - 2020

Travaux Dirigés (1)

Exercice 1. Pour chacun des problèmes de Cauchy suivants, justifier l'existence d'une unique solution maximale et déterminer son intervalle de définition :

$$x'(t) = 1 + x(t), \quad x(0) = 1,$$

 $x'(t) = x^{\frac{4}{3}}(t), \quad x(0) = 1,$
 $x'(t) = sinx(t), \quad x(0) = 2.$

Exercice 2. Montrer que le problème de Cauchy suivant

$$x'(t) = x^{\frac{2}{3}}(t), \quad x(0) = 0$$

admet une infinité de solutions.

Exercice 3. Soit *E* l'espace de Banach des suites réelles tendant vers zéro, muni de la norme définie par $||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n|$ pour $x = (x_n)_{n \in \mathbb{N}}$.

(1) Montrer que l'application $f: E \to E$ définie par

$$f(x) = f(x_n) = \sqrt{|x_n|} + \frac{1}{n+1}, \quad \forall x = (x_n) \in E, \quad n \in \mathbb{N}$$

est continue de E dans lui même.

(2) Considérons le problème de Cauchy

$$x'(t) = f(x(t)), \quad x(0) = 0_E.$$

Supposons que $x \in C^1(]-a, a[;E)$ soit une solution avec a > 0. Montrer qu'on a

$$x_n(t) > 0,$$
 $\frac{x'_n(t)}{\sqrt{x_n(t)}} > 1, \quad \forall n \in \mathbb{N}, \quad \forall t \in [0, a[.$

- (3) Déduire alors qu'on a $x_n(t) \ge \frac{t^2}{4}$, $\forall n \in \mathbb{N}$ et $\forall t \in [0, a[$.
- (4) Que peut-on conclure?

Exercice 4. Considérons l'équation de Riccati $x'(t) = x^2(t)$.

- (1) Déterminer l'intervalle d'existence de la solution maximale du problème de Cauchy associé à l'équation de Riccati en fonction de la donnée initiale $x(0) = x_0$.
- (2) Soit y(.) une fonction continue sur un intervalle J contenant 0 avec

$$y(t) \le e^{\int_0^t y(s)ds}, \forall t \in J.$$

Montrer (en utilisant la question 1. ainsi que le lemme de Gronwall) que $y(t) \le \frac{1}{1-t}, \quad \forall t \in J, \quad t < 1.$

- (3) Considérons maintenant l'équation $x'(t) = x^2(t) + t^2$, et soit x(.) la solution maximale du problème de Cauchy associé avec condition initiale x(0) = 0.
 - (3.1) Posons $z(t) = e^{(-\int_0^t x(s)ds)}$. Ecrire une EDO d'ordre deux de l'inconnue z(.) et montrer que $z'(0) = z''(0) = z^{(3)}(0) = 0$.
 - (3.2) Résoudre cette EDO en cherchant une solution z(.) sous forme d'une série entière.
 - (3.3) Déduire alors que x(.) est définie sur un intervalle]-a,a[avec a>2.

Université de Batna –2– Faculté de Mathématiques et d'Informatique Département de Mathématiques Master 1- EDP et applications

Module : EDO 1 2019 - 2020

Exercices supplémentaires (Chapitre 1)

Exercice 1. Considérons le problème de Cauchy : x'(t) = f(x(t)), $x(t_0) = x_0$, où $f : \mathbb{R} \to \mathbb{R}$ une fonction localement lipshitzienne de constante de Lipschitz k.

- (1) Montrer que ce problème admet une solution unique maximale définie sur T_*, T^* .
- (2) Montrer que cette solution vérifie :

$$|x(t) - x_0| \le |t| |f(x_0)| e^{k|t|}, \quad \forall t \in]T_*, T^*[$$

(3) Montrer que cette solution est globale.

Exercice 2. Considérons le problème de Cauchy :

$$x'(t) = -\nabla f(x(t)), \quad x(t_0) = x_0, \quad (t_0, x_0) \in \mathbb{R} * \mathbb{R}^N$$

où $f: \mathbb{R}^N \to \mathbb{R}$ une fonction de classe C^2 sur \mathbb{R}^N vérifiant $\lim_{\|x\| \to +\infty} f(x) = +\infty$

- (1) Montrer que ce problème admet une solution unique maximale définie sur $]T_*, T^*[$.
- (2) Montrer que f est décroissante.
- (3) Déduire que $T^* = +\infty$.
- (4) Considérons le cas N=1 et prenons la fonction $f(x)=\frac{x^4}{4}$. Montrer qu'on peut avoir $T_*>-\infty$.

Exercice 3. Soit $f: I * \mathbb{R}^N \to \mathbb{R}^N$ où I =]a,b[. Supposons que f soit continue et vérifiant : pour tout compact K de I, il existe $C_1 > 0$ et $C_2 > 0$ telle que

$$||f(t,x)|| \le C_1 ||x|| + C_2, \quad \forall (t,x) \in K * \mathbb{R}^N$$

- (1) Montrer que toute solution du problème de Cauchy $x'(t) = f(t, x(t)), \quad x(t_0) = x_0$ est globale.
- (2) Vérifier ce résultat pour le système linéaire x'(t) = A(t)x(t) + B(t) où A(t) et B(t) sont des matrices à coefficients continus, vérifient la propriété précédente.

Exercice 4. Soit $f: I * \mathbb{R}^N \to \mathbb{R}^N$ une fonction continue. Supposons que pour tout compact K de I, il existe une fonction $g: \mathbb{R}_+ \to \mathbb{R}_+$ continue telles que

$$||f(t,x)|| \le g(||x||), \quad \forall (t,x) \in K * \mathbb{R}^N$$

et

$$\int_0^{+\infty} \frac{ds}{g(s)} = +\infty$$

- (1) Montrer que toute solution maximale du problème de Cauchy $x'(t) = f(t, x(t)), \quad x(t_0) = x_0$ est alors globale.
- (2) Appliquer ce résultat sur le problème de Cauchy suivant : $x'(t) = x(t)log(1+x^2(t))$, $x(t_0) = x_0$.

Exercice 5. Considérons l'EDO du second ordre x''(t) = x(t), où $x(\cdot)$ une fonction inconnue définie de \mathbb{R} dans lui même.

- (1) Montrer que le problème de Cauchy associé à cette EDO de conditions initiales $x(0) = x_0 \in \mathbb{R}$ et x'(0) = 0, admet une solution unique définie sur \mathbb{R} tout entier.
- (2) Calculer cette solution.

5

Université de Batna –2– Faculté de Mathématiques et d'Informatique Département de Mathématiques Master 1- EDP et applications

Module : EDO 1 2019 - 2020

Travaux Dirigés (2)

Exercice 1. On rencontre souvent le phénomène "prédateurs-proies" quand on veut étudier deux populations dont leurs croissances influent l'une sur l'autre. Ce phénomène est régit par l'e système d'EDO suivant :

$$\begin{cases} x_1'(t) = x_1(t)(1 - x_2(t)), & t \ge 0 \\ x_2'(t) = x_2(t)(x_1(t) - 1), & t \ge 0 \end{cases}$$
 (01)

- (1) Écrire (01) sous forme d'une EDO autonome x'(t) = F(x(t)).
- (2) Vérifier que $E(x_1, x_2) = x_1 x_2 e^{-(x_1 + x_2)}$ est une intégrale première pour cette EDO.
- (3) Soit (x_1^0, x_2^0) un point de \mathbb{R}^2 vérifiant $x_1^0 x_2^0 > 0$. Montrer que toute solution de (01) passant par le point (x_1^0, x_2^0) a une orbite telle que $x_1(t)x_2(t) > 0$ pour tout t > 0.
- (4) Déterminer les points d'équilibres pour (01), écrire le système linéarisé au voisinage de chaque point et déduire l'allure des trajectoires pour ce système.

Exercice 2. (Supplémentaire) Considérons les deux EDO suivantes :

$$x''(t) + a^{2}(1 + bx^{2}(t))x(t) = 0, \quad t > 0$$
(02)

$$x''(t) - a^{2}(1 + bx^{2}(t))x(t) = 0, \quad t > 0$$
(03)

- (1) Déterminer les points d'équilibres pour (02) et (03).
- (2) Vérifier que les deux quantités suivantes forment une intégrale première pour (02) et (03) successivement :

$$\frac{1}{2}(x'(t))^2 + a^2\left(\frac{x^2(t)}{4} + b\frac{x^4(t)}{4}\right), \qquad \frac{1}{2}(x'(t))^2 - a^2\left(\frac{x^2(t)}{4} + b\frac{x^4(t)}{4}\right)$$

(3) Déduire une indication de la forme des orbites associées à chaque EDO.

Exercice 3. L'intensité du courant dans un circuit électrique est donnée par l'EDO d'ordre deux non linéaire suivante :

$$x''(t) - \mu(1 - x^{2}(t))x'(t) + x(t) = 0, \quad t \ge 0, \quad \mu > 0$$
(04)

- (1) Écrire (04) sous forme d'un système d'EDO autonome X(t) = F(X(t), où X(t) = (x(t), x'(t)).
- (2) Déterminer les points d'équilibres pour (04). Écrire le système linéarisé et déduire la nature des points d'équilibres pour le système de départ (qui est non linéaire).
- (3) On pose $\phi(x) = \mu(\frac{x^3}{3} x)$ de sorte que $\frac{d}{dt}(x'(t) + \phi(x(t)) + x(t)) = 0$ et on définie E par $E(x(t), x'(t) = \frac{1}{2}[(x'(t) + \phi(x(t))^2 + x^2(t)].$
- (3.1) Montrer que $\frac{dE}{dt} = -x\phi(x)$.
- (3.2) Pour quelle condition, E forme une intégrale première pour (04). Que peut-on déduire?
 - (4) Considérons maintenant $\mu = 0$ (ici l'équation obtenu représente l'oscillateur harmonique). Montrer que l'EDO obtenu admet des orbites périodiques (c-à-d des cycles).

Exercice 4. (Supplémentaire) Le mouvement d'un pendule simple avec amortissement est décrit par l'EDO du second ordre :

$$x''(t) + k^2 \sin(x(t)) = 0, \quad t \ge 0, \quad k > 0$$
(05)

- (1) Ecrire (05) sous forme d'un système d'EDO d'ordre un autonome X'(t) = F(X(t)) où X(t) = (x(t), x'(t)).
- (2) Montrer que $E(x(t), x'(t) = \frac{x'^2(t)}{2} + k^2(1 \cos(x(t)))$ est une intégrale première pour (05). Que peut-on conclure ?
- (3) Déduire la forme des trajectoires de (05) selon la valeur de E(x(t), x'(t) = a, où a une constante réelle.
- (4) déterminer les points d'équilibres pour (05), donner l'allure des trajectoires pour le système linéarise, puis déduire la nature des points d'équilibres pour le système de départ (05).

Exercice 5. Considérons le système d'EDO suivant :

$$\begin{cases} x'(t) = x(t) - x(t)y(t) - x^2(t), & t \ge 0 \\ y'(t) = -4y(t) + 2x(t)y(t), & t \ge 0 \end{cases}$$
 (06)

(Partie I.)

- (1) Déterminer les points d'équilibres, les isoclines I_0 , I_{∞} , le sens du champ et les solutions particulières de (06).
- (2) Déterminer la nature des points d'équilibres, et donner l'allure des trajectoires du système linéarisé.

Partie II. On s'intéresse maintenant aux trajectoires de (06) dans le quart du plan $P = \{(x,y) \in \mathbb{R}^2 : x \ge 0, y \ge 0\}$. On définit alors les trois zones :

$$I_1 = \{(x,y) \in \mathbb{R}^2 : 0 < x \le 1, \quad 1 - x - y \ge 0\},\$$

$$I_2 = \{(x,y) \in \mathbb{R}^2 : x \le 2, \quad 1 - x - y \le 0\}$$

$$I_3 = \{(x,y) \in \mathbb{R}^2 : x \ge 2\}$$

- (1) Soit $t \to (x(t), y(t))$ une solution de (06) de condition initiale $(x_0, y_0) \in I_1$:
- (1.1) Montrer que $(x(t), y(t)) \in I_1$ pour tout les temps ultérieurs de leur ensemble de définition (c-à-d I_1 est une zone piège).
- (1.2) Déduire que (x(t) et y(t)) sont définies sur $[0, +\infty[$ et que $\lim_{t\to +\infty}(x(t), y(t)) = (1, 0)$.
- (1.3) montrer que la fonction $u(t) = \frac{y(t)}{x(t)-1}$ a une limite quand $t \to +\infty$, et que cette limite est nulle.
 - (2) Montrer que toute trajectoire dans I_3 est définie par une fonction décroissante sur $[2, +\infty[$, puis étudier la branche infinie de cette trajectoire.
 - (3) Que se passe-il pour une trajectoire de condition initiale dans I_2 ?
 - (4) Dessiner l'allure des trajectoires de (06) dans P.

)

Université de Batna –2– Faculté de Mathématiques et d'Informatique Département de Mathématiques Master 1- EDP et applications

Module : EDO 1 2019 - 2020

Examen Continu

Exercice 1. Soit le problème de Cauchy

$$t^2x'(t) = t^2 + x^2(t) - tx(t), x(t_0) = x_0$$
 (Eq 1.)

- (1) Étudier l'existence et l'unicité de solutions pour le problème (Eq 1.).
- (2) Écrire l'EDO (Eq 1.) sous forme d'une équation homogène : $x'(t) = g(\frac{x(t)}{t})$, puis résoudre explicitement et localement le problème de Cauchy associé en cherchant la solution sous la forme x(t) = ty(t).
- (3) Déterminer T_* et T^* de l'intervalle d'existence de la solution maximale.
- (4) La solution maximale associée à (Eq 1.) est-elle globale?

Exercice 2. L'évolution en temps de l'angle $\theta(\cdot)$ d'un pendule simple avec amortissement est régit par le problème de Cauchy :

$$\theta''(t) = -\frac{k}{m}\theta'(t) - \frac{1}{L}sin(\theta(t))$$
 (Eq 2.)

ici L représente la longueur du fil auquel on a fixé une boule de masse m et k une constante positive.

- (1) Écrire le problème (Eq 2.) sous forme d'un système d'EDO d'ordre 1. Déterminer les points d'équilibres puis étudier l'allure des trajectoires du système linéarisé à l'origine seulement et déduire la nature de l'origine pour (Eq 2.).
- (2) Supposons maintenant que k = 0. Montrer par deux méthodes différentes que

$$E(\theta(t), \theta'(t)) = \frac{1}{2}mL^2(\theta'(t))^2 + mL(1 - \cos(\theta(t)))$$

est une intégrale première pour (Eq 2.) avec k = 0.

- (3) Déterminer l'énergie potentiel et l'énergie cinétique, puis vérifier que l'énergie totale est préservée par l'évolution temporelle.
- (4) Montrer que $\theta'(t) = \pm \sqrt{2(E(0) + \frac{1}{L}(1 \cos\theta(t)))}$, et déduire que $\theta(\cdot)$ est donnée explicitement par $F(\theta(t)) = F(\theta(t_0)) + t t_0$
- (5) Expliciter une solution pour (Eq 2.) dans le cas k = 0 (en utilisant le linéarisé) puis déduire que les trajectoires à l'origine dans ce cas ont la forme des ellipses.

Université de Batna –2–

Faculté de Mathématiques et d'Informatique

Département de Mathématiques

3 ème année

Module : Analyse 3

2019 - 2020

Examen continu

Exercice 1. On considère la série numérique de terme général

$$u_n = \frac{n}{(n^2 - 1)^2}, \quad n \ge 2$$

- (1) Montrer que la série $\sum_{i\geq 2} u_n$ est convergente.
- (2) Décomposer u_n en fonction de $\frac{1}{(n-1)^2}$ et $\frac{1}{(n+1)^2}$ puis déduire la somme de cette série.

Exercice 2. Répondre par vraie ou faux et corriger les fautes qui existent

- (1) $\sum_{i\geq 1} \frac{(-1)^n}{\sqrt{n}}$ est une suite alternée convergente et absolument convergente.
- (2) $\sum_{i\geq 1} (1+\sin\frac{1}{n})$ est divergente.
- (3) Si $\sum_{i>0} u_n$ est convergente alors $\lim_{n\to+\infty} u_n = 0$.
- (4) Si $u_n \sim a_n$ et $v_n \sim b_n$ alors $u_n + v_n \sim a_n + b_n$.
- (5) $\sum_{i>1} (\frac{3}{4})^n = 4$.

Université de Batna –2– Faculté de Mathématiques et d'Informatique Département de Mathématiques 3 ème année Module : Analyse 3

2019 - 2020

Examen continu

Exercice 1. On considère la série numérique de terme général

$$u_n = \frac{n}{(n^2 - 1)^2}, \quad n \ge 2$$

- (1) Montrer que la série $\sum_{i>2} u_n$ est convergente.
- (2) Décomposer u_n en fonction de $\frac{1}{(n-1)^2}$ et $\frac{1}{(n+1)^2}$, puis déduire la somme de cette série.

Exercice 2. Répondre par vraie ou faux et corriger les fautes qui existent

- (1) $\sum_{i\geq 1} \frac{(-1)^n}{\sqrt{n}}$ est une suite alternée convergente et absolument convergente.
- (2) $\sum_{i>1} (1+\sin\frac{1}{n})$ est divergente.
- (3) Si $\sum_{i>0} u_n$ est convergente alors $\lim_{n\to+\infty} u_n = 0$.
- (4) Si $u_n \sim a_n$ et $v_n \sim b_n$ alors $u_n + v_n \sim a_n + b_n$.
- (5) $\sum_{i\geq 1} (\frac{3}{4})^n = 4$.

Université de Batna –2– Faculté de Mathématiques et d'Informatique Département de Mathématiques Master 1- EDP et applications

Module : EDO 1 2019 - 2020

Examen Final

Exercice 1. Considérons le problème de Cauchy

$$x'(t) = (1 + \cos t)x(t) - x^{3}(t), \quad x(t_{0}) = x_{0}$$
(I)

- (1) Montrer que (??) admet une solution unique maximale $\phi(\cdot) \in C^1$ définie sur un intervalle J de \mathbb{R} à valeurs dans \mathbb{R} telle que $\phi(t_0) = x_0$.
- (2) Montrer que s'il existe $t_1 \in J$ telle que $\phi(t_1) = 0$ alors forcément on a $\phi(t) = 0$ pour tout $t \in J$.
- (3) Montrer que $\phi'(t) < 2\phi(t)$, $\forall t \in J$ et déduire que $\phi(t) \le \phi(0)e^{2t}$, $\forall t \in J$.
- (4) Montrer que la solution maximale $\phi(\cdot)$ de (??) est globale sur \mathbb{R}_+ .
- (5) On note $\psi(t,x(t))$ le flot associe à (??) en $t_0 = 0$ et $P(s) = \psi(s,2\pi)$, $\forall s \in \mathbb{R}_+$.
- (5.1) Calculer P(0) et P'(0) puis montrer que $P(\cdot)$ vérifie l'équation différentielle suivante :

$$P'(s) = e^{-4\pi} \left(\frac{P(s)}{s}\right)^3.$$

(5.2) Déduire à partir d'une solution de cette EDO, qu'une solution de (??) est 2π - périodique à valeurs strictement positives.

Exercice 2. Considérons le système différentiel

$$\begin{cases} x'(t) = y(t) + \alpha(x^3(t) + 2x(t)y^2(t)), & \alpha \in \mathbb{R}^* \\ y'(t) = -x(t) + \alpha y^3(t) \end{cases}$$
(II)