Série de TD 1. Théorie des inverses généralisés

Dans toute la suite V, W deux espaces normés sur le même corps K; et H un espace de Hilbert.

Exercice 1. Soient $A:V\longrightarrow W$, $B:W\longrightarrow V$ deux opérateurs linéaires bornés. Montrer que les assertions suivantes sont équivalentes

- (1) B est un inverse intérieur de A,
- (2) $(AB)^2 = AB \ et \ R(AB) = R(A),$
- (3) $(BA)^2 = BA \text{ et } N(BA) = N(A),$
- (4) $(BA)^2 = BA \text{ et } R(A) \cap N(B) = \{0\}.$

Exercice 2. Soient $A:V\longrightarrow W,\ B:W\longrightarrow V$ deux opérateurs linéaires bornés. Montrer que les assertions suivantes sont équivalentes

- (1) B est un inverse extérieur de A,
- (2) $(BA)^2 = BA \ et \ R(BA) = R(B),$
- (3) $(AB)^2 = AB \ et \ N(AB) = N(B),$
- (4) $(AB)^2 = AB$ et $R(B) \cap N(A) = \{0\}.$

Exercice 3. Soient U un espace normé et $T_1:V\to W,\,T_2:U\to V$ deux opérateurs linéaires bornés .

(1) Supposons que G_1 et G_2 sont deux inverses extérieurs de T_1 et T_2 , respectivement. Montrer que :

 G_2G_1 est un inverse extérieur de $T_1T_2 \Leftrightarrow T_2G_2G_1T_1$ est une projection.

(2) Supposons que S_1 et S_2 sont deux inverses intérieurs de T_1 et T_2 , respectivement. Montrer que :

 S_2S_1 est un inverse intérieur de $T_1T_2 \Leftrightarrow S_1T_1T_2S_2$ est une projection.

Exercice 4. Soit $Q \in B(H)$ un idempotent . Montrer que $Q^+ = P_{N(Q)^{\perp}} P_{R(Q)}$. (P_M une projection orthogonale sur le sous-espace vectoriel fermé M de H).

Exercice 5. Soient $A, B \in B(H)$ à images fermées. Supposons que $AB^* = A^*B = 0$. Montrer que :

- (1) $A^+B = BA^+ = AB^+ = B^+A = 0.$
- (2) $(A+B)^+ = A^+ + B^+$.

Exercice 6. Soient $A, B \in B(H)$, tels que A^* et B sont surjectifs. Posons T = AB.

- (1) Vérifier que A, B et T sont Moore-Penrose inversibles.
- (2) Montrer que $T^+ = B^+A^+$.
- (3) Montrer que A^*A et BB^* sont inversibles.
- (4) En déduire que $T^+ = B^*(BB^*)^{-1}(A^*A)^{-1}A^*$.

Exercice 7. Soit $A \in B(H)$ à image fermée. Montrer que les assertions suivantes sont équivalentes

- (1) A est auto-adjoint,
- (2) $AAA^{+} = A^{*}$,
- (3) $AA^*A^+ = A$.

Exercice 8. Soit $A \in B(H)$ à image fermée. Supposons que A est EP. Montrer que pour tout $n \in \mathbb{N}$, $R(A^n)$ fermé et que $(A^n)^+ = (A^+)^n$.