Table des matières

3	Le groupe inverse		
	3.1	Propriétés du groupe-inverse	2
		Opérateurs d'ascente et de descente finis.	ŗ

Chapitre 3

Le groupe inverse

3.1 Propriétés du groupe-inverse

Définition 3.1.1. Soit $A \in \mathcal{B}(H)$. Le groupe inverse de A est l'opérateur $B \in \mathcal{B}(H)$ vérifiant :

$$\begin{cases} ABA = A \\ BAB = B \\ AB = BA \end{cases}$$

Si A admet un groupe inverse, alors on dit que A est groupe inversible et on le note par $B=A^{\#}$.

Remarque 3.1.1. Si $A^{\#}$ existe, alors

- 1. A# est un inverse généralisé de A.
- 2. R(A) fermé.
- 3. $AA^{\#}$ et $A^{\#}A$ sont deux projections tels que $R(AA^{\#}) = R(A^{\#}A) = R(A)$ et $N(AA^{\#}) = N(A^{\#}A) = N(A)$.
- 4. $A = AA^{\#}A = AA^{2}A^{\#}$. et $A^{\#} = A^{\#}AA^{\#} = (A^{\#})^{2}A$.

Proposition 3.1.1. Soit $A \in B(H)$ à image fermée. Alors A est un EP opérateur si et seulement si $A^{\#}$ existe et $A^{\#} = A^{+}$.

Preuve. (⇒). Supposons que
$$A$$
 EP opérateur, i.e. $AA^+ = A^+A$ donc $A^\# = A^+$. (⇐). Maintenant si $A^\# = A^+$, alors $AA^+ = A^+A$. Par conséquent A est EP.

Théorème 3.1.2. Soit $A \in B(H)$ à image fermée. alors les assertions suivantes sont équivalentes :

- 1. $A^{\#}$ existe et il est unique,
- 2. $H = R(A) \oplus N(A)$,
- 3. $R(A^2) = R(A)$ et $N(A^2) = N(A)$,
- 4. $\exists U, W \in B(H)$ tels que $A^2U = A$ et $WA^2 = A$.

Preuve. $1 \Rightarrow 2$. Supposons que A^{\sharp} existe, alors $AA^{\sharp} = A^{\sharp}A$. Comme AA^{\sharp} est une projection, on déduit que

$$H = R(AA^{\sharp}) \oplus N(AA^{\sharp}).$$

On a
$$R(AA^{\sharp}) = R(A)$$
 et $N(AA^{\sharp}) = N(A^{\sharp}A) = N(A)$. Donc

$$H = R(A) \oplus N(A)$$
.

 $2 \Rightarrow 3$. Supposons que $H = R(A) \oplus N(A)$, alors

$$A(H) = AR(A) \oplus A(N(A)) = R(A^2).$$

Donc $R(A) = R(A^2)$. Comme $N(A) \subset N(A^2)$, alors il suffit de montrer que $N(A^2) \subset N(A)$.

$$\forall x \in N(A^2) \Rightarrow A^2x = 0.$$

$$\Rightarrow A(Ax) = 0$$

$$\Rightarrow Ax \in N(A) \cap R(A)$$

$$\Rightarrow Ax = 0$$

$$\Rightarrow x \in N(A).$$

Donc $N(A^2) \subset N(A)$.

 $3 \Rightarrow 4$. Supposons que $R(A^2) = R(A)$ et $N(A^2) = N(A)$. alors $R((A^*)^2) = R(A^*)$. Donc $R(A) \subset R(A^2)$ et $R(A^*) \subset R((A^*)^2)$

Par l'application du théorème de Douglas, il existe deux opérateurs $U,B\in B(H)$, vérifiant :

$$\begin{cases} A = A^2 U \\ A^* = (A^*)^2 B \end{cases}$$

Ce qui implique

$$\left\{ \begin{array}{l} A = A^{2}U \\ A = B^{*}A^{2} = WA^{2} \; (W = B^{*}) \end{array} \right.$$

 $4 \Rightarrow 1$ Posons B = WAU et montons que $A^{\#} = B$..

Montrons maintenant l'unicité de $A^{\#}$. Supposons par l'absurde que A possède deux groupe inverses $A_1^{\#}etA_2^{\#}$ différents. Comme

$$R(A_1^{\#}A) = R(A) = R(A_2^{\#}A),$$

et

$$N(A_1^{\#}A) = N(A) = N(A_2^{\#}A).$$

Alors

$$A_1^{\#}A = A_2^{\#}A = AA_1^{\#} = AA_2^{\#}.$$

Donc

$$A_1^{\#} = A_1^{\#} A A_1^{\#} = A_2^{\#} A A_1^{\#} = A_2^{\#},$$

Ce qui contredit l'hypothèse $A_1^{\#} \neq A_2^{\#}$.

Proposition 3.1.3. Soient $A, B \in B(H)$. Si $A^{\#}$ existe, alors on a

- 1. $(A^{\#})^{\#} = A$.
- 2. $(A^*)^\# = (A^\#)^*$.
- 3. Pour tout $n \in \mathbb{N}$, $(A^{\#})^n = (A^n)^{\#}$.
- 4. $Si \ AB = BA \ alors \ A^{\#}B = BA^{\#}.$

Preuve. 3- Puisque A et $A^{\#}$ commutent, alors pour $n \in \mathbb{N}$ on a

$$A^n(A^{\#})^n A^n = (AA^{\#}A)^n = A^n;$$

$$(A^{\#})^n A^n (A^{\#})^n = (A^{\#}AA^{\#})^n = (A^{\#})^n,$$

$$A^{n}(A^{\#})^{n} = (AA^{\#})^{n} = (A^{\#}A)^{n} = (A^{\#})^{n}A^{n}.$$

Donc $(A^{\#})^n = (A^n)^{\#}$.

4- Supposons que AB = BA. Alors on a :

$$A^{\#}B = (A^{\#})^2 A B = (A^{\#})^2 B A = (A^{\#})^2 B A^2 A^{\#} = (A^{\#})^2 A B A A^{\#} = A^{\#} B A A^{\#},$$

et

$$BA^{\#} = BA(A^{\#})^2 = AB(A^{\#})^2 = A^{\#}A^2B(A^{\#})^2 = A^{\#}A^2(A^{\#})^2 = A^{\#}BAA^{\#}.$$

Donc

$$A^{\#}B = BA^{\#}.$$

Remarque 3.1.2. Si A et B sont deux opérateurs groupe-inversibles tels que AB = BA, alors de la proposition précédente on déduit que :

$$A^{\#}B = BA^{\#}, AB^{\#} = B^{\#}A, A^{\#}B^{\#} = A^{\#}B^{\#}.$$

Proposition 3.1.4. Soient E et F deux espaces de Hilbert et Soient $A \in B(E)$, $B \in B(F)$. On pose $T = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \in B(E \oplus F)$. Alors T est groupe-inversible si et seulement si A et B sont groupe-inversibles. Dans ce cas $T^{\#} = \begin{bmatrix} A^{\#} & 0 \\ 0 & B^{\#} \end{bmatrix} \in B(E \oplus F)$.

Preuve. Supposons que $T^{\#}$ existe et

$$T^{\#} = \begin{bmatrix} C_1 & C_2 \\ C_3 & C_4 \end{bmatrix} \in B(E \oplus F)$$

Comme

$$\begin{cases} TT^{\#}T = T \\ T^{\#}TT^{\#} = T^{\#} \\ TT^{\#} = T^{\#}T, \end{cases}$$

alors on obtient

$$\begin{cases}
AC_1A = A, C_1AC_1 = C_1, AC_1 = C_1A \\
et \\
BC_4B = B, C_4BC_4 = C_4, BC_4 = C_4B.
\end{cases}$$

Donc A et B sont G-inversibles et de l'unicité du groupe-inverse, on déduit que

$$A^{\#} = C_1 \text{ et } B^{\#} = C_4$$

Inversement. Supposons maintenant que $A^{\#}$ et $B^{\#}$ existe. On pose

$$D = \begin{bmatrix} A^{\#} & 0 \\ 0 & B^{\#} \end{bmatrix} \in B(E \oplus F).$$

Donc

$$TDT = \begin{bmatrix} AA^{\#}A & 0 \\ 0 & BB^{\#}B \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} = T,$$

$$DTD = \begin{bmatrix} A^{\#}AA^{\#} & 0 \\ 0 & B^{\#}BB^{\#} \end{bmatrix} = \begin{bmatrix} A^{\#} & 0 \\ 0 & B^{\#} \end{bmatrix} = D,$$

$$TD = \begin{bmatrix} AA^{\#} & 0 \\ 0 & BB^{\#} \end{bmatrix} = \begin{bmatrix} A^{\#}A & 0 \\ 0 & B^{\#}B \end{bmatrix} = DT.$$

Par conséquent $T^{\#} = D$.

Opérateurs d'ascente et de descente finis. 3.2

Définition 3.2.1. Soit $A \in B(H)$.

1. On appelle l'ascente de A, notée a(A), le plus petit entier naturel n tel que : $N(A^n)$ $N(A^{n+1}).$

$$a(A) = asc(A) = \inf \{ n \in \mathbb{N} : N(A^n) = N(A^{n+1}) \}.$$

Si un tel entier n'existe pas, on pose $a(A) = \infty$.

2. On appelle la descente de A, notée d(A), le plus petit entier naturel n tel que $R(A^n) = R(A^{n+1}).$

$$d(A) = dsc(A) = \inf \{ n \in \mathbb{N} : R(A^n) = R(A^{n+1}) \}.$$

Si un tel entier n'existe pas, on pose $d(A) = \infty$.

Remarque 3.2.1. Si $A \in B(H)$, alors les trois propriétés suivantes sont équivalentes :

- 1. $a(A) < \infty$ et $d(A) < \infty$;
- 2. a(A) = d(A);
- 3. Il existe $k \in \mathbb{N}$, $H = N(A^k) \oplus R(A^k)$.

Corollaire 3.2.1. Soit $A \in B(H)$. Alors

A est groupe inversible \Leftrightarrow ind(A) ≤ 1 ,

où ind(A) = a(A) = d(A).

Preuve. Application directe du théorème 3.1.2.

Proposition 3.2.1. Soit $A \in B(H)$ à image fermée. Alors on a

1.

$$A = \begin{bmatrix} A_1 & A_2 \\ 0 & 0 \end{bmatrix} : R(A) \oplus N(A^*) \longrightarrow R(A) \oplus N(A^*).$$

2. A est groupe-inversible si et seulement si
$$A_1$$
 est inversible. Dans ce cas $A^{\#} = \begin{bmatrix} A_1^{-1} & A_1^{-2}A_2 \\ 0 & 0 \end{bmatrix} \in B(R(A) \oplus N(A^*))$

Preuve. 2) \Rightarrow . On a

$$A = \begin{bmatrix} A_1 & A_2 \\ 0 & 0 \end{bmatrix} : R(A) \oplus N(A^*) \longrightarrow R(A) \oplus N(A^*).$$

Supposons que $A^{\#}$ existe. On pose

$$A^{\#} = \begin{bmatrix} C_1 & C_2 \\ C_3 & C_4 \end{bmatrix} : R(A) \oplus N(A^*) \longrightarrow R(A) \oplus N(A^*).$$

Comme

$$\begin{cases} AA^{\#}A = A \\ A^{\#}AA^{\#} = A^{\#} \\ AA^{\#} = A^{\#}A, \end{cases}$$

alors on trouve

$$\begin{cases} A_1 C_1 A_1 = C_1 \\ C_1 A_1 C_1 = C_1 \\ A_1 C_1 = C_1 A_1 \end{cases}$$

On conclut que A_1 est G-inversible et donc $ind(A_1) \leq 1$.

Montrons que A_1 inversible.

Soit $y \in R(A)$, alors $\exists x \in H$ tel que A(x) = y. Comme A est G-inversible, alors

$$H = R(A) \oplus N(A),$$

et donc $\exists x_1 \in R(A), \ \exists x_2 \in N(A) \text{ tels que } x = x_1 + x_2.$ Ce qui implique

$$y = A(x) = A(x_1) = A_1(x_1)$$

Donc A_1 est surjectif. Par conséquent $d(A_1) = 0$. Puisque $ind(A_1) \le 1$, alors $a(A_1) = d(A_1) = 0$ et donc A_1 inversible.

Inversement. Supposons que A_1 inversible et posons

$$C = \begin{bmatrix} A_1^{-1} & A_1^{-2} A_2 \\ 0 & 0 \end{bmatrix} \in B(R(A) \oplus N(A^*))$$

Il est facile de vérifier que

$$\begin{cases}
ACA = C \\
CAC = C \\
AC = CA,
\end{cases}$$

Donc $A^{\#} = C$.